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 ABSTRACT  

Molecular docking is a key tool in structure-based drug 

design, extensively used to study biomolecular 

interactions and mechanisms. Molecular docking 

reliability is often evaluated using RMSD (Root Mean 

Square Deviation) compared to experimental structures, 

though such data is frequently unavailable in practice. 

Therefore, scoring functions can be used as an alternative 

to assess protein-ligand docking results. In this study, a 

simple computational scoring function for protein-ligand 

interaction was developed, based on calculating the sum 

of pairwise distances between ligand atoms bound in the 

active site and protein atoms. The distance matrix can be 

used to calculate a distance-based score (DB-Score). To 

better evaluate performance, we used experimentally 

determined values for   GRK6 (G protein-coupled receptor kinase 6) inhibitors to assess scoring and ranking accuracy compared to the 

AutoDock Vina program performances. Extensive experiments on this dataset demonstrate that the distance-based scoring function 

outperforms the conventional AutoDock Vina score in ranking and scoring. Pearson’s correlation coefficients for AutoDock Vina and our 

defined score against experimentally determined GRK6- were 0.09 and 0.76, respectively. Furthermore, the effectiveness of DB-Score 

was evaluated using the v2016-core subset of the PDBbind database. On the CASF-2016 benchmark, DB-Score achieved a Pearson’s 

r of 0.62, demonstrating surprisingly good performance. 

 

Keywords: Molecular docking, distance-based score, structure-based drug design, protein-ligand interaction, 

scoring function 

1. Introduction  

Molecular docking is one of the most widely used computer-aided drug design tools, simulating molecular 

interactions between small-molecule ligands and macromolecular targets to predict binding modes and affinities. [1-

3]. Since the mid-1980s, molecular docking- alongside advances in chemistry, physics, biochemistry, and 

information technology- has become a cornerstone of drug discovery [4-6]. Computer-aided drug design tools for 

virtual screening and structure-based design are used in the industrial and academic drug discovery process daily 

[7-9].  Molecular docking is employed to estimate the binding affinity and dominant binding mode(s) of a ligand 

when it binds to a macromolecule with a known three-dimensional structure. 

The primary explanation for the ligand-receptor binding mechanism, proposed by Fischer, is the lock-and-key 

theory, where the proper key (ligand) contains the appropriate pattern (conformation) to fit into a lock (receptor 

active site) [10]. The earliest proposed docking methods were based on Fisher’s theory, in which both receptor and 

ligand were considered as rigid bodies [4]. The induced fit theory expanded the lock-and-key model, emphasizing 

that ligand binding reshapes the protein’s active site during interaction [11]. Accordingly, it is better to consider 

ligands and receptors as flexible during docking [12]. Due to computer resource limitations, docking with a flexible 
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ligand and a rigid acceptor has long been the most common approach, and it remains prevalent today [13, 14]. There 

are two main types of computational strategies widely used for assessing the binding affinity of protein -ligand 

complexes. One type, which is also computationally expensive, is based on molecular dynamics simulations. These 

methods, widely applied in lead optimization and post-docking analysis, include computational approaches such as 

ASIE [15, 16], MM/GBSA-PBSA [17,18], and FEP/MD [19-21]. Another widely used approach in the rapid virtual 

screening of large chemical libraries is the scoring function (SF). The scoring function generally performs 

calculations based on only one spatial orientation of the protein-ligand structure, which is significantly faster. 

To prioritize potentially favourable binding modes, molecular docking algorithms incorporate scoring functions , 

mathematical expressions designed to evaluate and rank the resulting docked poses based on their estimated binding 

affinity. These functions help to distinguish between non-binders and binders from the expansive number of docked 

compounds created in a single docking run.  Various kinds of protein-ligand scoring functions have been developed 

over time, which fall under four broad classifications, including force field -based, knowledge-based, empirical, and 

machine learning-based SFs [22,23]. The continuous development and benchmarking of these diverse scoring 

approaches, particularly with the rise of machine learning, remain a central and rapidly evolving focus in 

computational chemistry to improve their predictive power and reliability [24, 25]. 

Despite advancements in scoring function development, persistent limitations in accuracy remain a primary 

bottleneck for reliable computational prediction of protein-ligand binding affinity [22, 26]. Therefore, ongoing 

refinement of robust scoring functions remains critical in the current situation. Scoring functions commonly applied 

in docking programs make many simplifications and assumptions to enable a more computationally efficient 

evaluation of ligand affinity. Naturally, the more accuracy is maintained against those simplifications, the more 

efficient that scoring function will be [22]. This challenge is further underscored by the rapid emergence of deep 

learning and artificial intelligence methods, which are creating new paradigms for predicting molecular interactions 

and pose ranking, yet often at the cost of interpretability and computational transparency [27, 28]. 

paper, we propose a simple computational distance-based scoring function, which is based on intermolecular 

distances between ligand and protein atoms. The distance matrix can be used to calculate distance -based scores. The 

use of geometric features, such as intermolecular distances and contact counts, has a precedent in the development 

of knowledge-based and other types of scoring functions [29-31]. However, the exploration of minimalist, geometry-

based metrics as standalone scoring functions continues to be an area of interest for pose prediction and affinity 

ranking [32]. In this landscape, our DB-Score represents a deliberate pursuit of simplicity, interpretability, and 

computational transparency. While the use of a distance-sum may seem counter-intuitive to energy-based scoring 

principles, we posit it serves as a potent geometric proxy. A higher score indicates a greater number of ligand atoms 

situated within a close-contact shell of the protein. This implicitly reflects superior surface complementarity and a 

higher count of favourable van der Waals interactions, bypassing potential errors associated with the 

parameterization of specific energy terms in conventional functions. It serves as a robust, physics -inspired baseline 

that complements the growing complexity of AI-driven models ,providing immediate, practical utility where 

computational resources or interpretability are paramount [33, 34]. 

The model is trained on data including experimentally determined 40 inhibitors of G protein -coupled receptor 

kinase 6 (GRK6), serving as the essential kinase necessary for the viability of multiple myeloma (MM) cells , 

retrieved from the Uehling et al. study [35]. While significant advancements have been made in characterizing small-

molecule interactions with GRK proteins, before the survey by Uehling et al. (2020), no dedicated publications 

existed on GRK6 inhibitors, and only a limited number of GRK6 ligands had been structurally characterized  [36, 

37]. Given the strong rationale for targeting GRK6 in MM, we sought to analyse better and investigate these novel 

GRK6 inhibitors through our computational approach.  Benchmarking on the test set demonstrated that the proposed 

scoring function outperforms AutoDock Vina in both ranking and scoring accuracy . 

 

2. Materials and methods 

2.1. Preparation of structures 
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The crystal structure of the human G Protein-Coupled Receptor Kinase 6 (GRK6) in Complex with Sangivamycin 

(PDB ID: 3NYN) was retrieved from the Protein Data Bank database (PDB), which was obtained by X-ray diffraction 

method with 2.72 Å resolution [36]. The protein structure comprises two complete chains (A and B) with full residue 

coverage, as resolved in the deposited PDB entry. GRK6 targets that are used in this study were 40 small ligand 

molecules retrieved from the Uehling et al. study [35]. Two ligands (n1 and n2) were sourced from the PubChem 

Database [38], while the 2D structures of 38 additional ligands (n3–n40) were generated using ChemDraw Ultra 

16.0 (PerkinElmer) [39]. Figure 1 shows all the 2D structures of these GRK6 inhibitors. 
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Figure 1. Structure of GRK6 inhibitors. 

 

The structures of all 40 ligands were geometrically optimized using HyperChem 8.0 via semi -empirical methods 

with the Polack-Ribere algorithm for energy minimization.  This approach was selected to generate high-quality, 

energetically minimized 3D starting structures for docking in a computationally feasible manner for our ligand 

dataset. While, higher-level methods like density functional theory (DFT) provide higher accuracy, they are 

computationally more demanding. Semi-empirical methods offer a practical compromise for pre-docking 

conformational optimization of a set of ligands of this size, giving reasonable geometries at a fraction of the 

computational cost, which is suitable for high-throughput docking workflows [40]. Additionally, Open Babel 

software was used for converting the different formats of ligand, protein, or protein -ligand complex structures [41]. 

 

2.2. Molecular docking 

Molecular docking analysis was performed by AutoDock vina [42] to identify binding affinity and possible 

binding poses between GRK6 and ligand targets. The macromolecule was prepared in Discovery Studio 21.1 by 

removing chain B, solvent molecules, and non-essential heteroatoms. Subsequent charge assignment and docking 

preparation were performed in UCSF Chimera 1.15. Afterward, the collected PDB format files of ligands and protein 

were uploaded into Autodock Tools 1.5.6 [43]. All input files (protein receptor and ligand) were prepared in 

AutoDock Tools 1.5.6 and saved in PDBQT format for molecular docking via AutoDock Vina 1.1.2 [42]. Eventually, 

docking procedures between ligand and macromolecule were carried out via AutoDock Vina 1.1.2 using default 

parameters and an inner docking box size of 18×22×20 (Figure 2). 

 

 
Figure 2. Docking grid box generating in AutoDock Tools. 

 



Materials Chemistry Horizons 

 

 

Materials Chemistry Horizons | 2025, 4(1), 59-76  64 

RESEARC

H 

 

RESEARCH 

The default AutoDock Vina output includes nine docking poses, with Pose 1 selected as the top-ranked solution 

based on minimized free-energy and structural alignment to the experimental binding mode (RMSD= 0). A lower 

binding energy score indicates a greater affinity between the ligand and the target macromolecules [44]. Moreover, 

the other eight modes were sorted by their affinity values, and also the RMSD lower bound ( rmsd l.b.) and upper 

bound (rmsd u.b.) values were reported based on distances of each ligand docking pose from the best mode docking 

pose. The output of software for n37 is shown in Figure 3. 

 

 

 
Figure 3. The output of AutoDock Vina for n37, the best mode is mode 1 with rmsd= 0 

 

For structural bioinformatics applications, the root-mean-square deviation (RMSD) is the principal algorithm for 

assessing conformational overlap between superimposed atomic models, with values conventionally expressed in 

angstroms (Å) and calculated as follows. 

𝑅𝑀𝑆𝐷 = √
1

𝑛
∑ 𝑑𝑖

2𝑛
𝑖=1                                                                                                                                                         (1)   

where the summation averages the squared distances (𝑑𝑖
2) over n pairs of equivalent atoms, with 𝑑𝑖 representing the 

displacement between the atomic coordinates of the i-th pair. The RMSD upper bound (u.b.) quantifies geometric 

similarity between two ligand conformations by superimposing corresponding atoms in a 1:1 pairwise manner, 

effectively measuring the structural conservation of all atomic positions. However, the RMSD lower  bound (l.b.) 

will give you the best RMSD independent of atom numbering. Therefore, if there is any internal symmetry in ligands, 

rmsd l.b. provides a better ranking of docking results.  

Since RMSD values provide a spatial metric for quantifying deviations between docked ligand poses, we ranked 

the output based on rmsd l.b. criteria, designating poses 2–9 as decoys due to their higher RMSD thresholds. 

Following the rmsd l.b. ranking, the first non-native mode (Pose 2) was defined as Decoy-1, and the final mode 

(Pose 9) was assigned as Decoy-8 for DB-Score validation, ensuring systematic evaluation of scoring function 

robustness (Figure 4). The generated PDB files of docked conformations were visualized in Discovery Studio 21.1 

for structural analysis. 

 

Best 

mode  
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Figure 4. Sorted Output of AutoDock Vina for n37 by the RMSD lower bound (rmsd l.b.) values. 

2.3. Calculating the distance-based score 

To calculate the DB-Score, a program was written in MATLAB 2021 and applied in different steps. First, the 

spatial coordinates of all ligand atoms and the spatial coordinates of protein atoms were considered. Then, the sum 

of the distance between all the docked ligand atoms and all the protein atoms with 3 Å (d cutoff) distances from them 

was obtained. It should be noted that dcutoff was calculated without taking into account the atomic radii of ligand and 

protein atoms. In other words, the distance between atom pairs was selected based on the distance between their 

electron clouds. The total distance was calculated by summing up the distances between every atom of the docked 

ligand and every protein atom within a 3 Å (d cutoff) distance from it. This obtained value was considered as a 

Distance-based score. The workflow for calculating the DB-Score is shown in Figure 5. 

 

 

Figure 5. Schematic workflow for calculating DB-Score. 

The relationship between the cutoff distance and the Pearson's correlation coefficient for the GRK6 dataset is 

illustrated in Figure 6a. The optimal cutoff was determined to be 3.0 Å, as it yielded the highest correlation with 

experimental pIC50 values. This distance is physically intuitive, corresponding to the typical range of strong van der 

Waals interactions and hydrogen bonds, ensuring the descriptor captures specific, short -range contacts at the binding 

interface. This parameter, identified from the GRK6 set, was subsequently applied without change to all external 

validation sets (CASF-2016 and BACE-1) to ensure an unbiased assessment of performance (Figure 6b and c). 

 

Decoy-8  

Decoy-1  

Prepare the 3D structure of 

the macromolecular target 

Determine a grid box in 

binding site coordinates 
Obtain 3D structures of all ligands, calculate 

charges, protonation state, etc. 

Docking by AutoDock Vina to find optimal binding modes 

Obtain the 3D protein-ligand complexes and their binding affinities 

Generating a distance matrix using MATLAB to calculate a distance-based score 



Materials Chemistry Horizons 

 

 

Materials Chemistry Horizons | 2025, 4(1), 59-76  66 

RESEARC

H 

 

RESEARCH 

 

Figure 6. The optimization of the cutoff distance with the corresponding Pearson’s correlation coefficient values for all three data sets 

(a) n=40, (b) n=285, and (c) n=91 data sets. 

 

In general, scores obtained by docking programs could be evaluated by several metrics [24]. For this, all 

AutoDock Vina scores and distance-based scores were consequently tested regarding scoring power and ranking 

power. The basic principles and evaluation techniques for these metrics are explained subsequently.  

2.4. Evaluating the scoring power 

Scoring power is defined as the correlation between the binding scores predicted by a scoring function and the  

experimentally determined binding affinities for a series of protein -ligand complexes. [45]. Scoring power is 

quantified using Pearson's correlation coefficient (r), calculated as follows  

𝑟 =  
∑  (𝑥𝑖−𝑥̅)(𝑦𝑖−𝑦̅)𝑛

𝑖

√∑  𝑛
𝑖 (𝑥𝑖−𝑥̅)2√∑  (𝑦𝑖−𝑦̅)2𝑛

𝑖

                                                                                                                                                (2) 

where 𝑥𝑖 is the calculated distance-based score and 𝑦𝑖  is the negative base-10 logarithm of experimental Half-

maximal inhibitory concentration (pIC50) of the i-th complex. Additionally, 𝑥̅ and 𝑦̅ denote the mean values of the 

computationally predicted scores and experimentally measured pIC50values, respectively. 

 

2.5. Evaluating the ranking power 

The capacity of a scoring function to accurately estimate the binding affinity order among known ligands for a 

specific target protein is referred to as ranking power or relative ranking prediction [45]. One can use Spearman's 

rank correlation coefficient (ρ) or Kendall's rank correlation coefficient ( 𝜏) as an indicator to evaluate the ranking 

power quantitatively [24]. The following equation shows how to calculate Spearman's rank correlation coefficient 

[46]. 

𝜌 =  
∑  (𝑟𝑥𝑖−𝑟𝑥̅̅̅̅ )(𝑟𝑦𝑖−𝑟𝑦̅̅̅̅ )𝑛

𝑖

√∑  𝑛
𝑖 (𝑥𝑖−𝑟𝑥̅̅̅̅ )2√∑  (𝑦𝑖−𝑟𝑦̅̅̅̅ )2𝑛

𝑖

                                                                                                                                             (3) 

Here, 𝑟𝑥𝑖  and 𝑟𝑦𝑖 are the rank of the distance-based score and the rank of the negative base-10 logarithm of 

experimental Half-maximal inhibitory concentration of the i-th complex, respectively; n denotes the total number of 

samples. Kendall's rank correlation coefficient , τ, is defined according to the following formula [47] 

𝜏 =  
𝑛𝑐−𝑛𝑑

√(𝑛𝑐+𝑛𝑑+𝑇)(𝑛𝑐+𝑛𝑑+𝑈)
                                                                                                                                                  (4)  

where 𝑛𝑑 (𝑛𝑑𝑖𝑠𝑐𝑜𝑟𝑑) and 𝑛𝑐 (𝑛𝑐𝑜𝑛𝑐𝑜𝑟𝑑) represent the counts of concordant and discordant pairs, respectively. A pair of 

observations (𝑥𝑖,𝑦𝑖) and (𝑥𝑗,𝑦𝑗) is termed concordant if the ordering of their scores is consistent across both variables- that 

is, 𝑥𝑖>𝑥𝑗 and 𝑦𝑖>𝑦𝑗 or  𝑦𝑖<𝑦𝑗 and 𝑥𝑖<𝑥𝑗. Conversely, the pair is discordant if the ranking is inconsistent- such as when 𝑦𝑖<𝑦𝑗 
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and, 𝑥𝑖>𝑥𝑗 or 𝑦𝑖>𝑦𝑗 and 𝑥𝑖<𝑥𝑗. In this context, 𝑥𝑖 denotes the new score for sample i, and 𝑦𝑖  corresponds to the negative base-

10 logarithm of its experimentally determined half-maximal inhibitory concentration. The variables T and U denote the 

number of tied pairs in x and y, respectively. Notably, if both 𝑥𝑖  = 𝑥𝑗 and 𝑦𝑖  = 𝑦𝑗 simultaneously, the pair is excluded from 

the tie counts T and U. Using the evaluation methods described above, one can utilize molecular docking as a "reverse 

screening" tool, as identifying potential protein targets for a given small molecule based on docking score 

correlations [48-50]. 

 

2.6. Evaluating the DB-score using CASF-2016 

A widely employed dataset to estimate the binding affinity of protein-ligand in molecular docking is the PDBbind 

dataset [84]. In this study, we used the latest available PDBbind core set for the scoring power test of DB -Score. 

This dataset is a strict subset of the CASF-2016 benchmark’s refined set, which contains diverse protein -ligand 

complexes resolved with high-resolution X-ray diffraction data. The PDBbind core set (CASF-2016) encompasses 

285 non-redundant protein-ligand complexes, categorized into 57 structurally diverse protein families with the 

highest quality. The binding affinities in the core set are expressed based on the negative logarithm value of the 

dissociation constant (𝐾𝑑) or inhibition constant (𝐾𝑖) (for both values, − log 𝐾𝑎 is used in this report). In the PDBbind 

dataset, native ligand structures are archived in SDF/mol2 formats, while protein structures are stored as PDB files, 

enabling compatibility with molecular docking and visualization workflows.  

To evaluate the DB-Score’s scoring power, we first generated distance-based scores for 285 PDBbind complexes 

using MATLAB R2021b, then computed Pearson’s (r) and Spearman’s (ρ) correlation coefficients against 

experimentally determined binding affinities. To validate the scoring function performance, we used decoy ligands 

for all 285 proteins using decoy structure data existing in CASF-2016. For this, since each protein had a diverse set 

of decoys, we selected the worst decoy with the maximum RMSD.  

 

3. Results and discussion 

3.1. Evaluation results of scoring power 

Our discussion commences with an analysis of the scoring power test, which embodies the scoring function’s 

capacity to demonstrate a linear correlation between distance-based scores and experimentally determined data 

obtained from a series of protein-ligand complexes. Although this test was conducted on experimentally validated 

complex structures, it is critical to emphasize that scoring functions must predict binding affinities in real-world 

scenarios where resolved protein-ligand structures are unavailable. A scoring function that fails to generate 

physically reasonable predictions for known structures would lack practical utility.  

The absolute value of binding scores calculated by AutoDock Vina software and the negative base -10 logarithm 

of experimental half-maximal inhibitory concentration (pIC50) for each ligand are given in the Supplementary 

Information (Table S1). After performing AutoDock Vina docking for all ligand-protein complexes, we analysed 

the top three poses per complex to assess correlations between our distance-based binding scores and experimental 

GRK6 pIC50 values. As previously described, the three retained modes for each ligand include the best mode (native -

like conformation), Decoy-1, and Decoy-8. To assess the scoring power of the DB-Score, we first computed the 

distance-based score for the best mode conformations using Matlab software. All calculated DB-Scores for the best 

mode of 40 protein-ligand complexes are shown in the Supplementary Information (Table S1). Pearson’s correlation 

coefficient (r) between the AutoDock Vina score and DB-Score for the best docking mode against experimental 

GRK6 pIC50 values is presented in Table 1. Compared with the Pearson’s correlation coefficient between the best 

mode of AutoDock Vina scores and GRK6 pIC50 values (r = 0.088) (Figure 7a), the performance of the DB-Score 

(r = 0.763) (Figure 7b) is still good.  

 

Table 1. The values of r, and ρ for AutoDock Vina score and DB-Scores of the best modes versus GRK6   

Scores r ρ 𝝉 

AutoDock Vina score 0.088 0.024 0.018 

DB-Score 0. 763 0. 697 0. 541 



Materials Chemistry Horizons 

 

 

Materials Chemistry Horizons | 2025, 4(1), 59-76  68 

RESEARC

H 

 

RESEARCH 

 

Figure 7. Assessing the (a) AutoDock Vina score and (b) the DB-Score for the best mode of 40 ligands versus pIC50 values. 

 

To validate the assessment of the scoring power of the DB-Score, we computed the distance-based score for 

Decoy-1 and 8 conformations. Since the decoy structure of ligands has less interaction with the protein compared to 

the best mode, in calculating the DB-Score, it is expected that these scores, which are the sum of the distances 

between the individual ligand atoms and the protein atoms, will be lower. All calculated DB -Scores for two decoy 

conformations of 40 protein-ligand complexes are shown in the Supplementary Information (Table S2). It is assumed 

that the greater the interaction of the ligand with the protein, the more atoms situated within a distance of less than 

3 Å from the protein atoms, which causes the DB-Score to have more values. For Decoy-1 and Decoy-8, the 

Pearson’s r values between DB-Score and experimental GRK6 pIC50 were 0.342 and 0.232, respectively, indicating 

weak correlations (Table S3). As expected,  Pearson’s correlation coefficient values for decoys 1 and 8 have a 

downward trend compared to the best mode. Moreover, lower Pearson’s correlation coefficients were obtained for 

Decoy-1 (r = 0.342) and Decoy-8 (r = 0.232) docking poses in protein-ligand complexes compared to the best mode 

Pearson’s correlation coefficient value (r = 0.763), which indicates a logical relation for the best mode and the worst 

conformations (Decoy-8) of protein-ligand complexes (see Figure 8). 

 

 

Figure 8. Performance of DB-Score for 40 ligand docking poses in GRK6; (a) Decoy-1, (b) Decoy-8. 

 

3.2. Evaluation results of ranking power 

As previously explained, either Spearman’s correlation coefficient (ρ) or Kendall’s correlation coefficient (τ) is 

utilized to assess the ranking power of a scoring function, which denotes its ability to rank distinct ligands against 
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a specific target accurately. The Spearman’s rank correlation coefficients between AutoDock Vina scores and DB -

Scores versus experimental GRK6 pIC50  values were 0.024 and 0.697, respectively (Table 1, Section 4.1). This 

demonstrates that DB-Score significantly outperforms the AutoDock Vina score. Additionally, the Spearman’s rank 

correlation coefficients between DB-Scores for Decoy-1 (ρ = 0.310) and Decoy-8 (ρ = 0.192) and experimental 

GRK6 pIC50 values were significantly lower than those of the best mode (ρ = 0.697), confirming DB -Score’s superior 

discriminative power for native-like poses (Table S3). Furthermore, Kendall’s correlation coefficient (𝜏) between 

the DB-Scores of all three selected modes for all protein-ligand complexes, including the best mode, Decoy-1, and 

Decoy-8, and experimental GRK6 pIC50 were 0.541, 0.207, and 0.135, respectively, which shows the exact change 

as the Spearman’s correlation coefficient values (see Table S3). 

Evaluating the results obtained from the new computational distance-based score and the previously available 

experimental data shows that when the interaction between protein and ligand is greater, the calculated values for 

DB-Score will also be higher. The positive correlation between DB-Score and binding affinity can be interpreted as 

a geometric consequence of optimal binding. A stronger binder typically maximizes its contact with the protein 

surface, positioning more of its atoms within the interaction cutoff. This increases the total sum of distances. 

Furthermore, a higher sum suggests that these contacts are, on average, at the favorable outer range of the van der 

Waals potential, indicative of good steric fit without repulsive clashes, as opposed to a  pose with fewer contacts or 

excessively short, strained distances. A stronger protein-ligand interaction or increased ligand activity for a specific 

protein correlates with a significant increase in the number of atomic contacts (distance < 3 Å) within th e binding 

pose, as opposed to weaker interactions. To better clarify the DB-Score, some intermolecular distances for two 

Ligands (n32 and n37) and also their best mode docking poses with GRK6 are shown in Figure 9. 

 

 
Figure 9. The conformation of the best (n37) (a) and the worst (n32) (b) inhibitor of GRK6 according to experimental pIC50 

values in the protein active site after docking. Some intermolecular distances lower than 3 Å were demonstrated for n37 ( c) and 

n32 (d) in the GRK6 active site. 

 

3.3. Core set analysis 

For assessing the scoring power of DB-Score, we used the CASF-2016 benchmark test. For this, the latest 

available core set (285 complexes) of the PDBbind database was used. To evaluate DB-Score’s predictive power, 

we first calculated distance-based scores for all 285 protein-ligand complexes using MATLAB R2021b. All 

calculated DB-Score values for 285 protein-ligand complexes are shown in the Supplementary Information (Table 

 

a c 

b d 
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S4). As shown in Figure 10a, Pearson’s correlation coefficient between experimental − log 𝐾𝑎 values and calculated 

DB-Score was 0.623. Moreover, the Spearman’s and Kendall’s correlation coefficient between experimental − log 𝐾𝑎 

and calculated DB-Score were 0.613 and 0.441, respectively. This analysis demonstrates DB-Score’s remarkable 

predictive efficacy across the full diversity of the PDBbind dataset (n = 285), despite its algorithmic simplicity. As 

explained before, all 285 protein-ligand complexes are clustered in 57 different protein families. In the per -cluster 

analysis case, the DB-Score can predict Pearson’s correlation trend correctly within the majority of clusters (76% 

of all). For 67% of all clusters, the Pearson’s r values exceeded 0.7, and for 9% of them, the values were between 

0.6 and 0.7. To validate the scoring function’s performance, we utilized decoy ligands with the maximum RMSD  

values from the CASF-2016 benchmark’s decoy set (n = 285 proteins), ensuring robus tness in distinguishing native-

like poses from non-native conformations. All calculated DB-Score values for decoy conformation of 285 protein-

ligand complexes are shown in the Supplementary Information (Table S5). As expected, lower Pearson’s correlation 

coefficients (r = 0.335) were obtained in decoy analysis (see Figure 10b). 

 

Figure 10. Performance of DB-Score for complexes from the v2016 core set (a) with native ligand (b) with the decoy. 

 

3.4. Additional evaluations 

To provide further insights into the performance of the distance-based score in specific categories of 

protein−ligand complexes, we conducted a re-evaluation of the DB-Score using three distinct sets of subsets 

derived from the core set of the PDBbind database. These subsets were analysed with respect to their scoring 

and ranking power. Each of the three subsets was constructed to reflect a shared physicochemical 

characteristic relevant to ligand–receptor interactions. Specifically, these characteristics include: the excluded 

volume within the binding site upon ligand association (denoted as ∆VOL), the percentage of solvent -

accessible surface area (SAS) of the ligand that undergoes burial during binding (∆SAS), and the 

hydrophobicity of the binding site, described by a hydrophobic scale (H-scale). Following the classification 

introduced by Su et al., the subsets categorized by ∆VOL are labeled V1, V2, and V3; those based on ∆SAS 

are designated as S1, S2, and S3; and the subsets defined by the H-scale are referred to as H1, H2, and H3, 

respectively [84].  

The scoring and ranking performance of the DB-score across different subsets is presented in Table S6. 

The method demonstrates enhanced predictive capability for target proteins characterized by medium -sized 

binding pockets (subset V2, Pearson’s r = 0.67) and for complexes in which the ligands exhibit higher solvent 

exposure (subset S1, Pearson’s r = 0.75). These observations suggest that strain energy variations play a more 

prominent role when the ligand is not deeply embedded within the binding cavity. Moreover, the DB -score 
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also shows improved performance for targets with moderately hydrophobic binding sites (subset H2, Pearson’s 

r = 0.71) (see Table S6). Additionally, the DB-Score’s performance on a distinct biological target was assessed 

using Pearson’s (r) and Spearman’s (ρ) correlation coefficients, confirming its generalizability across protein 

families. In pursuit of this goal, we collected a test set comprising 91 complexes of β-Secretase 1 (BACE-1) 

(the detailed list of all the collected crystal complexes and calculated D-Score values is shown in Table S7). 

the Pearson and Spearman correlation coefficient between experimental data and calculated DB -Score were 

0.774 and 0.719, respectively, demonstrating its surprisingly good performance (Figure 11). 

 

 

Figure 11. Assessing the DB-Score for BACE-1 complexes versus pIC50 values (n = 91). 

 

3.5. Comparison with a simple contact count 

To further elucidate the physical basis of the DB-Score, we investigated whether its performance was 

primarily driven by the number of contacts or the specific distance information. We calculated a simple 

geometric baseline: the count of protein-ligand atom pairs within the 3 Å cutoff (`COUNT`), and compared 

its correlation with experimental values to that of our distance-sum descriptor (`SUM`). For the GRK6 set, 

the `COUNT` metric achieved a Pearson's r of 0.764, virtually identical to the DB-Score (r = 0.763). This 

confirms that the fundamental predictive signal is the number of close intermolecular contacts, which serves 

as a robust geometric proxy for the burial of ligand surface area and the formation of favorable van der Waals 

interactions. 

However, on the larger and more structurally diverse CASF-2016 and BACE-1 benchmarks, the `SUM` 

descriptor demonstrated a consistent, albeit slight, performance advantage (CASF -2016: `SUM` r = 0.623 vs. 

`COUNT` r = 0.617; BACE-1: `SUM` r = 0.774 vs. `COUNT` r = 0.772). We posit that this is because the 

`SUM` descriptor contains more nuanced information. While `COUNT` is a binary measure, the `SUM` 

descriptor implicitly weights contacts by their distance. A contact at 2.1 Å contributes less to the total sum 

than a contact at 2.9 Å. In physical terms, a larger sum indicates that, on average, the close contacts are at the 

outer, more favorable range of the van der Waals potential, potentially reflecting a less strained or more 

optimal interaction geometry. Therefore, we retained the sum of distances as the definition of the DB-Score, 

as it provides a marginally more discriminative and physically nuanced measure without adding algorithmic 

complexity. 

 

3.6. Comparison with different scoring functions 

Figure S1 in the Supplementary Information illustrates a comparison of scoring power between DB -Score 

(highlighted in black) and other scoring functions, as quantified by Pearson’s correlation coefficient. 

According to the lower panel figure, one can see that all ML-based scoring functions (top 12 scoring functions) 

exhibit remarkable convergence in predictive performance for binding scores, with metric variations confined 
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to the second decimal place. This performance parity persists despite substantial variations in their underlying 

feature engineering approaches. Recent evaluations of machine-learning models using the CASF-2016 

benchmark have demonstrated their superior performance relative to traditional scoring functions. While 

certain machine learning scoring functions exhibit superior performance under constrained experimental 

conditions, their reliance on training set size results in context -dependent accuracy across diverse biological 

systems. 

Equally critical, however, direct comparisons between conventional scoring functions, our proposed DB -

Score, and ML-based methods are methodologically biased due to differences in algorithmic complexity and 

training data requirements. Our proposed DB-Score employs a distance-based descriptor, eliminating the need for 

complex computations or high computational resources, while still yielding reliable predictions. As seen in the upper 

panel figure (Figure S1), DB-Score, compared to 34 conventional and standard scoring functions, stands in the top 5 

rank. Surprisingly, it performs acceptably well relative to the simplicity of the method. All Pearson correlation 

coefficient values of different SFs are summarized in Table S8.   

A compelling rationale for the DB-Score's strong performance may stem from its inherent robustness against the 

parameterization errors that can plague physics-based scoring functions. Traditional functions, such as those used in 

AutoDock Vina, rely on pre-defined force fields to decompose binding energy into distinct physical terms (e.g., van 

der Waals, hydrogen bonding, electrostatics). The accuracy of these functions is therefore fundamentally dependent 

on the quality and transferability of their underlying parameters. Any systematic bias or inaccuracy in these 

parameters—especially for less common chemical groups or metal ions—can propagate and lead to consistent mis-

scoring of ligands containing those moieties. In stark contrast, the DB-Score is a purely geometric descriptor. It is 

agnostic to atom types, chemical functionalities, or the specific nature of the intermolecular interactions. By design, 

it circumvents the need for any force field parameters, relying instead on a simple, universal principle: the extent of 

close-range proximity between the ligand and the protein. This parameter-free nature makes the DB-Score a highly 

generalizable and robust tool. Its performance is less likely to be compromised by the specific chemical composition 

of the system under study, thereby offering a consistent and unbiased evaluation that is resilient to the particular errors 

inherent in more complex, physically-grounded models. 

A second, more speculative but intriguing hypothesis is that the DB-Score may implicitly capture critical 

thermodynamic contributions, namely solvation and entropy, that are notoriously difficult to model explicitly. A high 

DB-Score, which signifies a ligand that achieves extensive close contacts, is effectively a measure of how well the 

ligand "fills" the binding pocket and achieves steric complementarity. This efficient pocket-filling inherently leads to 

the displacement of water molecules from the binding site. It is well-established that water molecules confined within 

protein pockets, particularly in hydrophobic environments, are often in a high-energy, entropically unfavorable state. 

The thermodynamic gain from releasing these ordered, energetically "unhappy" water molecules into the bulk solvent 

is a major driver of binding affinity. While many scoring functions treat solvation and entropic effects with crude, 

often inadequate empirical terms, the DB-Score may act as a powerful, albeit indirect, proxy for this phenomenon. 

It is crucial to delineate the scope and limitations of the DB-Score. As a post-docking re-scoring function, it is not 

designed to predict absolute binding affinity nor replace the sampling and scoring steps of docking itself. Its 

application is to re-rank pre-generated poses from tools like AutoDock Vina to achieve a better correlation with 

experimental data. Furthermore, the DB-Score is inherently a steric and contact-based descriptor. It lacks explicit 

terms for key physicochemical interactions such as electrostatic contributions, explicit hydrogen bonding, desolvation 

penalties, or entropy. Its success implies that for many systems, especially those dominated by hydrophobic and van 

der Waals interactions, steric complementarity is a dominant and predictive factor. However, its performance may be 

less reliable for systems where electrostatics or specific, directional hydrogen bonds are the primary drivers of binding. 

 

4. Conclusion 

In this study, we introduced a simple computational protein-ligand scoring function based on the pairwise 

distances between ligand and protein atoms.  To rigorously evaluate the performance of this distance-based 

scoring function, we employed a previously validated dataset containing experimentally measured GRK6 

pIC50 values, enabling systematic assessment of scoring and ranking power compared to AutoDoc k Vina 
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program performances. Extensive experiments on this data  revealed that the proposed scoring function 

significantly outperforms AutoDock Vina in both ranking and scoring. Validation via the CASF -2016 

benchmark confirmed DB-Score’s performance is surprisingly good.  The enhanced performance of DB-Score 

is driven by its algorithmic simplicity and computational efficiency. Since in computer -aided drug discovery, 

predicting the exact binding pose of a ligand to its target protein and the corresponding binding aff inity 

constitutes a pivotal challenge, we suppose that DB-Score can be applied successfully in this field. The success 

of the DB-Score is attributed to its role as a robust geometric proxy for the number and quality of close 

intermolecular contacts, a fundamental driver of binding affinity. Its transparency and computational 

efficiency stand in contrast to the "black box" nature of many modern machine -learning approaches, 

positioning it as a valuable, interpretable baseline for the field. Additionally, DB-Score was developed using 

MATLAB code,which can be easily embedded in other workflows. It is critical to note that DB-Score is applied 

post-docking, as conventional tools like AutoDock Vina lack robust correlations with experimental data, necessitating 

post-processing via our scoring function for reliable predictions. Therefore, our scoring function can be utilized to 

establish a stronger connection between the scores generated and experimental results. It should be noted that the score 

obtained from our scoring function cannot be used to compare structures with different RMSD values in the output 

of docking software such as AutoDock Vina, as this scoring function is not designed to predict protein-ligand binding 

affinity. Instead, this scoring function applies to post-docking operations to better correlate with experimental results. 

Therefore, screening power and docking power tests are not executable and evaluable in this method as the primary 

aim is not to estimate protein–ligand binding affinity. Unlike conventional docking workflows, our approach first 

identifies stable ligand conformations via AutoDock Vina, then re-ranks them using DB-Score to prioritize drug 

candidates. Therefore, it is recommended to use the introduced scoring function after molecular docking 

operations using software such as AutoDock Vina, as our scoring function can better correlate scores with 

experimental values in further steps. 
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