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ABSTRACT

Molecular docking is a key tool in structure-based drug N d

design, extensively used to study biomolecular q%g& _ m%k
interactions and mechanisms. Molecular docking ‘\'& ; o PR P e

reliability is often evaluated using RMSD (Root Mean .

Square Deviation) compared to experimental structures,
though such data is frequently unavailable in practice.
Therefore, scoring functions can be used as an altemative
to assess proteinigand docking results. In this study, a
simple computational scoring function for protein-igand
interaction was developed, based on calculating the sum
of pairwise distances between ligand atoms bound in the
active site and protein atoms. The distance matrix can be
used to calculate a distance-based score (DB-Score). To L ANy, b

better evaluate performance, we used experimentally Cafculating Distance-Baced Score

determined values for GRKG6 (G protein-coupled receptor kinase 6) inhibitors to assess scoring and ranking accuracy compared to the
AutoDock Vina program performances. Extensive experiments on this dataset demonstrate that the distance-based scoring function
outperforms the conventional AutoDock Vina score in ranking and scoring. Pearson’s correlation coefficients for AutoDock Vina and our
defined score against experimentally determined GRK6- were 0.09 and 0.76, respectively. Furthemmore, the effectiveness of DB-Score
was evaluated using the v2016-core subset of the PDBbind database. On the CASF-2016 benchmark, DB-Score achieved a Pearson’s
r of 0.62, demonstrating surprisingly good performance.

Keywords: Molecular docking, distance-based score, structure-based drug design, protein-ligand interaction,
scoring function

1. Introduction

Molecular docking is one of the most widely used computer-aided drug design tools, simulating molecular
interactions between small-molecule ligands and macromolecular targets to predict binding modes and affinities. [1-
3]. Since the mid-1980s, molecular docking- alongside advances in chemistry, physics, biochemistry, and
information technology- has become a cornerstone of drug discovery [4-6]. Computer-aided drug design tools for
virtual screening and structure-based design are used in the industrial and academic drug discovery process daily
[7-9]. Molecular docking is employed to estimate the binding affinity and dominant binding mode(s) of a ligand
when it binds to a macromolecule with a known three-dimensional structure.

The primary explanation for the ligand-receptor binding mechanism, proposed by Fischer, is the lock-and-key
theory, where the proper key (ligand) contains the appropriate pattern (conformation) to fit into a lock (receptor
active site) [10]. The earliest proposed docking methods were based on Fisher’s theory, in which both receptor and
ligand were considered as rigid bodies [4]. The induced fit theory expanded the lock-and-key model, emphasizing
that ligand binding reshapes the protein’s active site during interaction [11]. Accordingly, it is better to consider
ligands and receptors as flexible during docking [12]. Due to computer resource limitations, docking with a flexible
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ligand and a rigid acceptor has long been the most common approach, and it remains prevalent today [13, 14]. There
are two main types of computational strategies widely used for assessing the binding affinity of protein-ligand
complexes. One type, which is also computationally expensive, is based on molecular dynamics simulations. These
methods, widely applied in lead optimization and post-docking analysis, include computational approaches such as
ASIE [15, 16], MM/GBSA-PBSA [17,18], and FEP/MD [19-21]. Another widely used approach in the rapid virtual
screening of large chemical libraries is the scoring function (SF). The scoring function generally performs
calculations based on only one spatial orientation of the protein-ligand structure, which is significantly faster.

To prioritize potentially favourable binding modes, molecular docking algorithms incorporate scoring functions,
mathematical expressions designed to evaluate and rank the resulting docked poses based on their estimated binding
affinity. These functions help to distinguish between non-binders and binders from the expansive number of docked
compounds created in a single docking run. Various kinds of protein-ligand scoring functions have been developed
over time, which fall under four broad classifications, including force field-based, knowledge-based, empirical, and
machine learning-based SFs [22,23]. The continuous development and benchmarking of these diverse scoring
approaches, particularly with the rise of machine learning, remain a central and rapidly evolving focus in
computational chemistry to improve their predictive power and reliability [24, 25].

Despite advancements in scoring function development, persistent limitations in accuracy remain a primary
bottleneck for reliable computational prediction of protein-ligand binding affinity [22, 26]. Therefore, ongoing
refinement of robust scoring functions remains critical in the current situation. Scoring functions commonly applied
in docking programs make many simplifications and assumptions to enable a more computationally efficient
evaluation of ligand affinity. Naturally, the more accuracy is maintained against those simplifications, the more
efficient that scoring function will be [22]. This challenge is further underscored by the rapid emergence of deep
learning and artificial intelligence methods, which are creating new paradigms for predicting molecular interactions
and pose ranking, yet often at the cost of interpretability and computational transparency [27, 28].

paper, we propose a simple computational distance-based scoring function, which is based on intermolecular
distances between ligand and protein atoms. The distance matrix can be used to calculate distance-based scores. The
use of geometric features, such as intermolecular distances and contact counts, has a precedent in the development
of knowledge-based and other types of scoring functions [29-31]. However, the exploration of minimalist, geometry-
based metrics as standalone scoring functions continues to be an area of interest for pose prediction and affinity
ranking [32]. In this landscape, our DB-Score represents a deliberate pursuit of simplicity, interpretability, and
computational transparency. While the use of a distance-sum may seem counter-intuitive to energy-based scoring
principles, we posit it serves as a potent geometric proxy. A higher score indicates a greater number of ligand atoms
situated within a close-contact shell of the protein. This implicitly reflects superior surface complementarity and a
higher count of favourable van der Waals interactions, bypassing potential errors associated with the
parameterization of specific energy terms in conventional functions. It serves as a robust, physics-inspired baseline
that complements the growing complexity of Al-driven models ,providing immediate, practical utility where
computational resources or interpretability are paramount [33, 34].

The model is trained on data including experimentally determined 40 inhibitors of G protein-coupled receptor
kinase 6 (GRKS®6), serving as the essential kinase necessary for the viability of multiple myeloma (MM) cells,
retrieved from the Uehling et al. study [35]. While significant advancements have been made in characterizing small-
molecule interactions with GRK proteins, before the survey by Uehling et al. (2020), no dedicated publications
existed on GRK6 inhibitors, and only a limited number of GRK6 ligands had been structurally characterized [36,
37]. Given the strong rationale for targeting GRK6 in MM, we sought to analyse better and investigate these novel
GRKG6 inhibitors through our computational approach. Benchmarking on the test set demonstrated that the proposed
scoring function outperforms AutoDock Vina in both ranking and scoring accuracy.

2. Materials and methods
2.1. Preparation of structures
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The crystal structure of the human G Protein-Coupled Receptor Kinase 6 (GRK6) in Complex with Sangivamycin
(PDB ID: 3NYN) was retrieved from the Protein Data Bank database (PDB), which was obtained by X-ray diffraction
method with 2.72 A resolution [36]. The protein structure comprises two complete chains (A and B) with full residue
coverage, as resolved in the deposited PDB entry. GRK6 targets that are used in this study were 40 small ligand
molecules retrieved from the Uehling et al. study [35]. Two ligands (nl and n2) were sourced from the PubChem
Database [38], while the 2D structures of 38 additional ligands (n3-—n40) were generated using ChemDraw Ultra
16.0 (PerkinElmer) [39]. Figure 1 shows all the 2D structures of these GRK6 inhibitors.
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Figure 1. Structure of GRK6 inhibitors.

The structures of all 40 ligands were geometrically optimized using HyperChem 8.0 via semi-empirical methods
with the Polack-Ribere algorithm for energy minimization. This approach was selected to generate high-quality,
energetically minimized 3D starting structures for docking in a computationally feasible manner for our ligand
dataset. While, higher-level methods like density functional theory (DFT) provide higher accuracy, they are
computationally more demanding. Semi-empirical methods offer a practical compromise for pre-docking
conformational optimization of a set of ligands of this size, giving reasonable geometries at a fraction of the
computational cost, which is suitable for high-throughput docking workflows [40]. Additionally, Open Babel
software was used for converting the different formats of ligand, protein, or protein-ligand complex structures [41].

2.2. Molecular docking

Molecular docking analysis was performed by AutoDock vina [42] to identify binding affinity and possible
binding poses between GRK6 and ligand targets. The macromolecule was prepared in Discovery Studio 21.1 by
removing chain B, solvent molecules, and non-essential heteroatoms. Subsequent charge assignment and docking
preparation were performed in UCSF Chimera 1.15. Afterward, the collected PDB format files of ligands and protein
were uploaded into Autodock Tools 1.5.6 [43]. All input files (protein receptor and ligand) were prepared in
AutoDock Tools 1.5.6 and saved in PDBQT format for molecular docking via AutoDock Vina 1.1.2 [42]. Eventually,
docking procedures between ligand and macromolecule were carried out via AutoDock Vina 1.1.2 using default
parameters and an inner docking box size of 18 x22x20 (Figure 2).

Figure 2. Docking grid box generating in AutoDock Tools.
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The default AutoDock Vina output includes nine docking poses, with Pose 1 selected as the top-ranked solution
based on minimized free-energy and structural alignment to the experimental binding mode (RMSD= 0). A lower
binding energy score indicates a greater affinity between the ligand and the target macromolecules [44]. Moreover,
the other eight modes were sorted by their affinity values, and also the RMSD lower bound (7msd 1.b.) and upper
bound (rmsd u.b.) values were reported based on distances of each ligand docking pose from the best mode docking
pose. The output of software for n37 is shown in Figure 3.

mode | affinity | dist from best mode
| (kcal/mol) | rmsd l.b.| rmsd u.b.
————— +--—t
1 Best -9.3 0.000 0.000

2 " -8.9 2.277 2.927

3 -8.9 1.868 2.49%¢6

4 -8.9 1.678 2.024

5 -8.9 2.886 6.490

6 -8.8 3.097 6.240

7 -8.7 3.547 6.958

8 -8.4 3.854 8.708

9 -8.3 3.712 7.125

Figure 3. The output of AutoDock Vina for n37, the best mode is mode 1 with rmsd= 0

For structural bioinformatics applications, the root-mean-square deviation (RMSD) is the principal algorithm for
assessing conformational overlap between superimposed atomic models, with values conventionally expressed in
angstroms (A) and calculated as follows.

1
RMSD = |-3, d? €]

where the summation averages the squared distances (d?) over n pairs of equivalent atoms, with d; representing the
displacement between the atomic coordinates of the i-th pair. The RMSD upper bound (u.b.) quantifies geometric
similarity between two ligand conformations by superimposing corresponding atoms in a 1:1 pairwise manner,
effectively measuring the structural conservation of all atomic positions. However, the RMSD lower bound (l.b.)
will give you the best RMSD independent of atom numbering. Therefore, if there is any internal symmetry in ligands,
rmsd 1.b. provides a better ranking of docking results.

Since RMSD values provide a spatial metric for quantifying deviations between docked ligand poses, we ranked
the output based on rmsd 1.b. criteria, designating poses 2—9 as decoys due to their higher RMSD thresholds.
Following the rmsd 1.b. ranking, the first non-native mode (Pose 2) was defined as Decoy-1, and the final mode
(Pose 9) was assigned as Decoy-8 for DB-Score validation, ensuring systematic evaluation of scoring function
robustness (Figure 4). The generated PDB files of docked conformations were visualized in Discovery Studio 21.1
for structural analysis.
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mode | affinity | dist from best mode
§| (kcal/mol) | rmsd 1.b.| rmsd u.b.

____._+ ____________ + __________ + __________
1 -9.3 0.000 0.000
4 Decoy-1 _g g 1.678 2.024
3 -§8.9 1.868 2.496
2 -§.9 2,277 2.927
6 -§8.8 3.007 6.240
5 -§8.9 2.886 6.490
7 -8.7 3.547 6.958
9 -8.3 3.712 7.125
8 Decoy-8 -§.4 3.854 8.708

Figure 4. Sorted Output of AutoDock Vina for n37 by the RMSD lower bound (rmsd 1.b.) values.

2.3. Calculating the distance-based score

To calculate the DB-Score, a program was written in MATLAB 2021 and applied in different steps. First, the
spatial coordinates of all ligand atoms and the spatial coordinates of protein atoms were considered. Then, the sum
of the distance between all the docked ligand atoms and all the protein atoms with 3 A (dcuwr) distances from them
was obtained. It should be noted that dcuorr Wwas calculated without taking into account the atomic radii of ligand and
protein atoms. In other words, the distance between atom pairs was selected based on the distance between their
electron clouds. The total distance was calculated by summing up the distances between every atom of the docked
ligand and every protein atom within a 3 A (dcuwfr) distance from it. This obtained value was considered as a
Distance-based score. The workflow for calculating the DB-Score is shown in Figure 5.

Prepare the 3D structure of Determine a grid box in

Obtain 3D structures of all ligands, calculate
the macromolecular target binding site coordinates

charges, protonation state, etc.

'

Docking by AutoDock Vina to find optimal binding modes

Obtain the 3D protein-ligand complexes and their binding affinities

A 4

Generating a distance matrix using MATLAB to calculate a distance-based score

Figure 5. Schematic workflow for calculating DB-Score.

The relationship between the cutoff distance and the Pearson's correlation coefficient for the GRK6 dataset is
illustrated in Figure 6a. The optimal cutoff was determined to be 3.0 A, as it yielded the highest correlation with
experimental pICs, values. This distance is physically intuitive, corresponding to the typical range of strong van der
Waals interactions and hydrogen bonds, ensuring the descriptor captures specific, short-range contacts at the binding
interface. This parameter, identified from the GRK6 set, was subsequently applied without change to all external
validation sets (CASF-2016 and BACE-1) to ensure an unbiased assessment of performance (Figure 6b and c).
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Figure 6. The optimization of the cutoff distance with the corresponding Pearson’s correlation coefficient values for all three data sets
(a) n=40, (b) n=285, and (c) n=91 data sets.

In general, scores obtained by docking programs could be evaluated by several metrics [24]. For this, all
AutoDock Vina scores and distance-based scores were consequently tested regarding scoring power and ranking
power. The basic principles and evaluation techniques for these metrics are explained subsequently.

2.4. Evaluating the scoring power

Scoring power is defined as the correlation between the binding scores predicted by a scoring function and the
experimentally determined binding affinities for a series of protein-ligand complexes. [45]. Scoring power is
quantified using Pearson's correlation coefficient (r), calculated as follows

n f—_— P —A7
r= i xi=0)(yi—y) (2)
J2 im0 52 -2

where x; is the calculated distance-based score and y; is the negative base-10 logarithm of experimental Half-
maximal inhibitory concentration (pICgg) of the i-th complex. Additionally, X and y denote the mean values of the
computationally predicted scores and experimentally measured pICgyvalues, respectively.

2.5. Evaluating the ranking power

The capacity of a scoring function to accurately estimate the binding affinity order among known ligands for a
specific target protein is referred to as ranking power or relative ranking prediction [45]. One can use Spearman's
rank correlation coefficient (p) or Kendall's rank correlation coefficient (7) as an indicator to evaluate the ranking
power quantitatively [24]. The following equation shows how to calculate Spearman's rank correlation coefficient
[46].

_ P rxi—Tx) (ryi—7y)
= (3)
[ 2 (57 0im)?

Here, rx; and ry; are the rank of the distance-based score and the rank of the negative base-10 logarithm of
experimental Half-maximal inhibitory concentration of the i-th complex, respectively; n denotes the total number of
samples. Kendall's rank correlation coefficient, 7, is defined according to the following formula [47]

T Se d (4)

= Jetng+T(nc+ng+0)

where ng (Mgiscora) and N, Meoncora) represent the counts of concordant and discordant pairs, respectively. A pair of
observations (x;,y;) and (x;,y;) is termed concordant if the ordering of their scores is consistent across both variables- that
is, x;>x; and y;>y; or ¥;<y; and x;<x;. Conversely, the pair is discordant if the ranking is inconsistent- such as when y;<y;
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and, x;>x; or y;>y; and x;<x;. In this context, x; denotes the new score for sample 7, and y; corresponds to the negative base-
10 logarithm of its experimentally determined half-maximal inhibitory concentration. The variables T and U denote the
number of tied pairs in x and y, respectively. Notably, if both x; = x; and y; = y; simultaneously, the pair is excluded from
the tie counts T and U. Using the evaluation methods described above, one can utilize molecular docking as a "reverse
screening" tool, as identifying potential protein targets for a given small molecule based on docking score
correlations [48-50].

2.6. Evaluating the DB-score using CASF-2016

A widely employed dataset to estimate the binding affinity of protein-ligand in molecular docking is the PDBbind
dataset [84]. In this study, we used the latest available PDBbind core set for the scoring power test of DB-Score.
This dataset is a strict subset of the CASF-2016 benchmark’s refined set, which contains diverse protein-ligand
complexes resolved with high-resolution X-ray diffraction data. The PDBbind core set (CASF-2016) encompasses
285 non-redundant protein-ligand complexes, categorized into 57 structurally diverse protein families with the
highest quality. The binding affinities in the core set are expressed based on the negative logarithm value of the
dissociation constant (K,;) or inhibition constant (K;) (for both values, —log K, is used in this report). In the PDBbind
dataset, native ligand structures are archived in SDF/mol2 formats, while protein structures are stored as PDB files,
enabling compatibility with molecular docking and visualization workflows.

To evaluate the DB-Score’s scoring power, we first generated distance-based scores for 285 PDBbind complexes
using MATLAB R2021b, then computed Pearson’s (r) and Spearman’s (p) correlation coefficients against
experimentally determined binding affinities. To validate the scoring function performance, we used decoy ligands
for all 285 proteins using decoy structure data existing in CASF-2016. For this, since each protein had a diverse set
of decoys, we selected the worst decoy with the maximum RMSD.

3. Results and discussion
3.1. Evaluation results of scoring power

Our discussion commences with an analysis of the scoring power test, which embodies the scoring function’s
capacity to demonstrate a linear correlation between distance-based scores and experimentally determined data
obtained from a series of protein-ligand complexes. Although this test was conducted on experimentally validated
complex structures, it is critical to emphasize that scoring functions must predict binding affinities in real-world
scenarios where resolved protein-ligand structures are unavailable. A scoring function that fails to generate
physically reasonable predictions for known structures would lack practical utility.

The absolute value of binding scores calculated by AutoDock Vina software and the negative base-10 logarithm
of experimental half-maximal inhibitory concentration (pICs,) for each ligand are given in the Supplementary
Information (Table S1). After performing AutoDock Vina docking for all ligand-protein complexes, we analysed
the top three poses per complex to assess correlations between our distance-based binding scores and experimental
GRKG6 plCs, values. As previously described, the three retained modes for each ligand include the best mode (native-
like conformation), Decoy-1, and Decoy-8. To assess the scoring power of the DB-Score, we first computed the
distance-based score for the best mode conformations using Matlab software. All calculated DB-Scores for the best
mode of 40 protein-ligand complexes are shown in the Supplementary Information (Table S1). Pearson’s correlation
coefficient (r) between the AutoDock Vina score and DB-Score for the best docking mode against experimental
GRKG6 plCs, values is presented in Table 1. Compared with the Pearson’s correlation coefficient between the best
mode of AutoDock Vina scores and GRK6 plC;, values (» = 0.088) (Figure 7a), the performance of the DB-Score
(r=0.763) (Figure 7b) is still good.

Table 1. The values of r, and p for AutoDock Vina score and DB-Scores of the best modes versus GRK6

Scores r p T
AutoDock Vina score 0.088 0.024 0.018
DB-Score 0.763 0. 697 0.541
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Figure 7. Assessing the (a) AutoDock Vina score and (b) the DB-Score for the best mode of 40 ligands versus plCsq values.

To validate the assessment of the scoring power of the DB-Score, we computed the distance-based score for
Decoy-1 and 8 conformations. Since the decoy structure of ligands has less interaction with the protein compared to
the best mode, in calculating the DB-Score, it is expected that these scores, which are the sum of the distances
between the individual ligand atoms and the protein atoms, will be lower. All calculated DB-Scores for two decoy
conformations of 40 protein-ligand complexes are shown in the Supplementary Information (Table S2). It is assumed
that the greater the interaction of the ligand with the protein, the more atoms situated within a distance of less than
3 A from the protein atoms, which causes the DB-Score to have more values. For Decoy-1 and Decoy-8, the
Pearson’s r values between DB-Score and experimental GRK6 pICs, were 0.342 and 0.232, respectively, indicating
weak correlations (Table S3). As expected, Pearson’s correlation coefficient values for decoys 1 and 8 have a
downward trend compared to the best mode. Moreover, lower Pearson’s correlation coefficients were obtained for
Decoy-1 (r = 0.342) and Decoy-8 (» = 0.232) docking poses in protein-ligand complexes compared to the best mode
Pearson’s correlation coefficient value (» = 0.763), which indicates a logical relation for the best mode and the worst
conformations (Decoy-8) of protein-ligand complexes (see Figure 8).
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Figure 8. Performance of DB-Score for 40 ligand docking poses in GRK6; (a) Decoy-1, (b) Decoy-8.

3.2. Evaluation results of ranking power
As previously explained, either Spearman’s correlation coefficient (p) or Kendall’s correlation coefficient (1) is
utilized to assess the ranking power of a scoring function, which denotes its ability to rank distinct ligands against
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a specific target accurately. The Spearman’s rank correlation coefficients between AutoDock Vina scores and DB -
Scores versus experimental GRK6 plCs, values were 0.024 and 0.697, respectively (Table 1, Section 4.1). This
demonstrates that DB-Score significantly outperforms the AutoDock Vina score. Additionally, the Spearman’s rank
correlation coefficients between DB-Scores for Decoy-1 (p = 0.310) and Decoy-8 (p = 0.192) and experimental
GRKG6 plICs, values were significantly lower than those of the best mode (p =0.697), confirming DB-Score’s superior
discriminative power for native-like poses (Table S3). Furthermore, Kendall’s correlation coefficient (7) between
the DB-Scores of all three selected modes for all protein-ligand complexes, including the best mode, Decoy-1, and
Decoy-8, and experimental GRK6 pICs, were 0.541, 0.207, and 0.135, respectively, which shows the exact change
as the Spearman’s correlation coefficient values (see Table S3).

Evaluating the results obtained from the new computational distance-based score and the previously available
experimental data shows that when the interaction between protein and ligand is greater, the calculated values for
DB-Score will also be higher. The positive correlation between DB-Score and binding affinity can be interpreted as
a geometric consequence of optimal binding. A stronger binder typically maximizes its contact with the protein
surface, positioning more of its atoms within the interaction cutoff. This increases the total sum of distances.
Furthermore, a higher sum suggests that these contacts are, on average, at the favorable outer range of the van der
Waals potential, indicative of good steric fit without repulsive clashes, as opposed to a pose with fewer contacts or
excessively short, strained distances. A stronger protein-ligand interaction or increased ligand activity for a specific
protein correlates with a significant increase in the number of atomic contacts (distance < 3 A) within the binding
pose, as opposed to weaker interactions. To better clarify the DB-Score, some intermolecular distances for two
Ligands (n32 and n37) and also their best mode docking poses with GRK6 are shown in Figure 9.

Figure 9. The conformation of the best (n37) (a) and the worst (n32) (b) inhibitor of GRK6 according to experimental pICs,
values in the protein active site after docking. Some intermolecular distances lower than 3 A were demonstrated for n37 (c¢) and
n32 (d) in the GRK6 active site.

3.3. Core set analysis

For assessing the scoring power of DB-Score, we used the CASF-2016 benchmark test. For this, the latest
available core set (285 complexes) of the PDBbind database was used. To evaluate DB-Score’s predictive power,
we first calculated distance-based scores for all 285 protein-ligand complexes using MATLAB R2021b. All
calculated DB-Score values for 285 protein-ligand complexes are shown in the Supplementary Information (Table
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S4). As shown in Figure 10a, Pearson’s correlation coefficient between experimental — log K, values and calculated
DB-Score was 0.623. Moreover, the Spearman’s and Kendall’s correlation coefficient between experimental —log K,
and calculated DB-Score were 0.613 and 0.441, respectively. This analysis demonstrates DB-Score’s remarkable
predictive efficacy across the full diversity of the PDBbind dataset (n = 285), despite its algorithmic simplicity. As
explained before, all 285 protein-ligand complexes are clustered in 57 different protein families. In the per-cluster
analysis case, the DB-Score can predict Pearson’s correlation trend correctly within the majority of clusters (76%
of all). For 67% of all clusters, the Pearson’s r values exceeded 0.7, and for 9% of them, the values were between
0.6 and 0.7. To validate the scoring function’s performance, we utilized decoy ligands with the maximum RMSD
values from the CASF-2016 benchmark’s decoy set (n = 285 proteins), ensuring robustness in distinguishing native-
like poses from non-native conformations. All calculated DB-Score values for decoy conformation of 285 protein-
ligand complexes are shown in the Supplementary Information (Table S5). As expected, lower Pearson’s correlation
coefficients (» = 0.335) were obtained in decoy analysis (see Figure 10b).
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Figure 10. Performance of DB-Score for complexes from the v2016 core set (a) with native ligand (b) with the decoy.

3.4. Additional evaluations

To provide further insights into the performance of the distance-based score in specific categories of
protein—ligand complexes, we conducted a re-evaluation of the DB-Score using three distinct sets of subsets
derived from the core set of the PDBbind database. These subsets were analysed with respect to their scoring
and ranking power. Each of the three subsets was constructed to reflect a shared physicochemical
characteristic relevant to ligand—receptor interactions. Specifically, these characteristics include: the excluded
volume within the binding site upon ligand association (denoted as AVOL), the percentage of solvent-
accessible surface area (SAS) of the ligand that undergoes burial during binding (ASAS), and the
hydrophobicity of the binding site, described by a hydrophobic scale (H-scale). Following the classification
introduced by Su et al., the subsets categorized by AVOL are labeled V1, V2, and V3; those based on ASAS
are designated as S1, S2, and S3; and the subsets defined by the H-scale are referred to as H1, H2, and H3,
respectively [84].

The scoring and ranking performance of the DB-score across different subsets is presented in Table S6.
The method demonstrates enhanced predictive capability for target proteins characterized by medium-sized
binding pockets (subset V2, Pearson’s r = 0.67) and for complexes in which the ligands exhibit higher solvent
exposure (subset S1, Pearson’s r = 0.75). These observations suggest that strain energy variations play a more
prominent role when the ligand is not deeply embedded within the binding cavity. Moreover, the DB -score
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also shows improved performance for targets with moderately hydrophobic binding sites (subset H2, Pearson’s
r=0.71) (see Table S6). Additionally, the DB-Score’s performance on a distinct biological target was assessed
using Pearson’s (r) and Spearman’s (p) correlation coefficients, confirming its generalizability across protein
families. In pursuit of this goal, we collected a test set comprising 91 complexes of -Secretase 1 (BACE-1)
(the detailed list of all the collected crystal complexes and calculated D-Score values is shown in Table S7).
the Pearson and Spearman correlation coefficient between experimental data and calculated DB-Score were
0.774 and 0.719, respectively, demonstrating its surprisingly good performance (Figure 11).
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Figure 11. Assessing the DB-Score for BACE-1 complexes versus plCsy values (n = 91).

3.5. Comparison with a simple contact count

To further elucidate the physical basis of the DB-Score, we investigated whether its performance was
primarily driven by the number of contacts or the specific distance information. We calculated a simple
geometric baseline: the count of protein-ligand atom pairs within the 3 A cutoff (COUNT"), and compared
its correlation with experimental values to that of our distance-sum descriptor ('SUM"). For the GRK®6 set,
the "COUNT" metric achieved a Pearson's r of 0.764, virtually identical to the DB-Score (» = 0.763). This
confirms that the fundamental predictive signal is the number of close intermolecular contacts, which serves
as a robust geometric proxy for the burial of ligand surface area and the formation of favorable van der Waals
interactions.

However, on the larger and more structurally diverse CASF-2016 and BACE-1 benchmarks, the *SUM"
descriptor demonstrated a consistent, albeit slight, performance advantage (CASF-2016: "SUM" r = 0.623 vs.
'COUNT »=0.617; BACE-1: "SUM" r = 0.774 vs. "COUNT" r = 0.772). We posit that this is because the
'SUM" descriptor contains more nuanced information. While "COUNT" is a binary measure, the ‘SUM"
descriptor implicitly weights contacts by their distance. A contact at 2.1 A contributes less to the total sum
than a contact at 2.9 A. In physical terms, a larger sum indicates that, on average, the close contacts are at the
outer, more favorable range of the van der Waals potential, potentially reflecting a less strained or more
optimal interaction geometry. Therefore, we retained the sum of distances as the definition of the DB-Score,
as it provides a marginally more discriminative and physically nuanced measure without adding algorithmic
complexity.

3.6. Comparison with different scoring functions

Figure S1 in the Supplementary Information illustrates a comparison of scoring power between DB -Score
(highlighted in black) and other scoring functions, as quantified by Pearson’s correlation coefficient.
According to the lower panel figure, one can see that all ML-based scoring functions (top 12 scoring functions)
exhibit remarkable convergence in predictive performance for binding scores, with metric variations confined
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to the second decimal place. This performance parity persists despite substantial variations in their underlying
feature engineering approaches. Recent evaluations of machine-learning models using the CASF-2016
benchmark have demonstrated their superior performance relative to traditional scoring functions. While
certain machine learning scoring functions exhibit superior performance under constrained experimental
conditions, their reliance on training set size results in context-dependent accuracy across diverse biological
systems.

Equally critical, however, direct comparisons between conventional scoring functions, our proposed DB -
Score, and ML-based methods are methodologically biased due to differences in algorithmic complexity and
training data requirements. Our proposed DB-Score employs a distance-based descriptor, eliminating the need for
complex computations or high computational resources, while still yielding reliable predictions. As seen in the upper
panel figure (Figure S1), DB-Score, compared to 34 conventional and standard scoring functions, stands in the top 5
rank. Surprisingly, it performs acceptably well relative to the simplicity of the method. All Pearson correlation
coefficient values of different SFs are summarized in Table S8.

A compelling rationale for the DB-Score's strong performance may stem from its inherent robustness against the
parameterization errors that can plague physics-based scoring functions. Traditional functions, such as those used in
AutoDock Vina, rely on pre-defined force fields to decompose binding energy into distinct physical terms (e.g., van
der Waals, hydrogen bonding, electrostatics). The accuracy of these functions is therefore fundamentally dependent
on the quality and transferability of their underlying parameters. Any systematic bias or inaccuracy in these
parameters—especially for less common chemical groups or metal ions—can propagate and lead to consistent mis-
scoring of ligands containing those moieties. In stark contrast, the DB-Score is a purely geometric descriptor. It is
agnostic to atom types, chemical functionalities, or the specific nature of the intermolecular interactions. By design,
it circumvents the need for any force field parameters, relying instead on a simple, universal principle: the extent of
close-range proximity between the ligand and the protein. This parameter-free nature makes the DB-Score a highly
generalizable and robust tool. Its performance is less likely to be compromised by the specific chemical composition
of the system under study, thereby offering a consistent and unbiased evaluation that is resilient to the particular errors
inherent in more complex, physically-grounded models.

A second, more speculative but intriguing hypothesis is that the DB-Score may implicitly capture critical
thermodynamic contributions, namely solvation and entropy, that are notoriously difficult to model explicitly. A high
DB-Score, which signifies a ligand that achieves extensive close contacts, is effectively a measure of how well the
ligand "fills" the binding pocket and achieves steric complementarity. This efficient pocket-filling inherently leads to
the displacement of water molecules from the binding site. It is well-established that water molecules confined within
protein pockets, particularly in hydrophobic environments, are often in a high-energy, entropically unfavorable state.
The thermodynamic gain from releasing these ordered, energetically "unhappy" water molecules into the bulk solvent
is a major driver of binding affinity. While many scoring functions treat solvation and entropic effects with crude,
often inadequate empirical terms, the DB-Score may act as a powerful, albeit indirect, proxy for this phenomenon.

It is crucial to delineate the scope and limitations of the DB-Score. As a post-docking re-scoring function, it is not
designed to predict absolute binding affinity nor replace the sampling and scoring steps of docking itself. Its
application is to re-rank pre-generated poses from tools like AutoDock Vina to achieve a better correlation with
experimental data. Furthermore, the DB-Score is inherently a steric and contact-based descriptor. It lacks explicit
terms for key physicochemical interactions such as electrostatic contributions, explicit hydrogen bonding, desolvation
penalties, or entropy. Its success implies that for many systems, especially those dominated by hydrophobic and van
der Waals interactions, steric complementarity is a dominant and predictive factor. However, its performance may be
less reliable for systems where electrostatics or specific, directional hydrogen bonds are the primary drivers of binding.

4. Conclusion

In this study, we introduced a simple computational protein-ligand scoring function based on the pairwise
distances between ligand and protein atoms. To rigorously evaluate the performance of this distance-based
scoring function, we employed a previously validated dataset containing experimentally measured GRK6
pIC50 values, enabling systematic assessment of scoring and ranking power compared to AutoDock Vina
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program performances. Extensive experiments on this data revealed that the proposed scoring function
significantly outperforms AutoDock Vina in both ranking and scoring. Validation via the CASF-2016
benchmark confirmed DB-Score’s performance is surprisingly good. The enhanced performance of DB-Score
is driven by its algorithmic simplicity and computational efficiency. Since in computer-aided drug discovery,
predicting the exact binding pose of a ligand to its target protein and the corresponding binding affinity
constitutes a pivotal challenge, we suppose that DB-Score can be applied successfully in this field. The success
of the DB-Score is attributed to its role as a robust geometric proxy for the number and quality of close
intermolecular contacts, a fundamental driver of binding affinity. Its transparency and computational
efficiency stand in contrast to the "black box" nature of many modern machine-learning approaches,
positioning it as a valuable, interpretable baseline for the field. Additionally, DB-Score was developed using
MATLAB code,which can be easily embedded in other workflows. It is critical to note that DB-Score is applied
post-docking, as conventional tools like AutoDock Vina lack robust correlations with experimental data, necessitating
post-processing via our scoring function for reliable predictions. Therefore, our scoring function can be utilized to
establish a stronger connection between the scores generated and experimental results. It should be noted that the score
obtained from our scoring function cannot be used to compare structures with different RMSD values in the output
of docking software such as AutoDock Vina, as this scoring function is not designed to predict protein-ligand binding
affinity. Instead, this scoring function applies to post-docking operations to better correlate with experimental results.
Therefore, screening power and docking power tests are not executable and evaluable in this method as the primary
aim is not to estimate protein—ligand binding affinity. Unlike conventional docking workflows, our approach first
identifies stable ligand conformations via AutoDock Vina, then re-ranks them using DB-Score to prioritize drug
candidates. Therefore, it is recommended to use the introduced scoring function after molecular docking
operations using software such as AutoDock Vina, as our scoring function can better correlate scores with
experimental values in further steps.
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