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ABSTRACT  
One of the leading causes of death worldwide 
these days is cancer, and new anticancer drugs 
have been developed to treat it with all the vigor of 
the advancement of science and technology. 
Unfortunately, these drugs are very expensive, 
and besides, they cause great economic hardship 
for cancer patients and society as a whole. On the 
other hand, the deployment of hazardous 
chemicals, and especially the common 
commercial solvents in the production of anti-
cancer drugs, causes environmental pollution thus 
contributing to the drug purification costs. Herein, 
recent FDA-approved anticancer drugs in 2020-
2021, their mechanism of action, financial 
challenges, and associated environmental 
hazards are deliberated, with possible solutions that may reduce not only the costs of the drugs but also the 
environmental pollution involved in the synthesis of anticancer drugs via greener pathways by appropriate 
substitution. 
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1. Introduction 
Cancer is one of the leading causes of human beings worldwide death with its most common types such as lung, 

colon, prostate, and breast cancer [1,2]. The occurrence, mortality, and disability-adjusted life year burden of cancer 
vary greatly by country and region, especially between developing countries and developed countries. GLOBOCAN 
2020 estimated that there were 19,292,789 cancer cases and 9,958,133 cancer deaths globally in 2020 [3].  

In today's world, concerns have been raised about the cost-effectiveness and safety of high-cost cancer medications 
at the end of life, which have caused these practices to come under fire [4]. It is debatable whether these new cancer 
drugs add any value, despite their continued approval and use. There are many academic groups as well as research 
and developments (R&D) in pharmaceutical companies that work on anticancer drugs, analysis, and delivery 
approaches [5–7]. 

New drug approvals are generating a multi-billion dollar market due to the ever-rising prices of drugs [8]. It is 
estimated that 19 million people worldwide suffer from cancer in today's society. To treat cancer, anti-cancer drugs 
are needed, which imposes huge costs on cancer patients, their families, and society as a whole; bankruptcy appears 
to be associated with cancer diagnosis and treatment for underinsured patients [3,9–11]. ACS and the Green Chemistry 
Institute established the ACS-GCI Pharmaceutical Roundtable in 2005 (ACS-GCIPR, hereinafter referred to as the 
Roundtable). It was expanded in 2018, with the inclusion of several major pharmaceutical companies, including 
AstraZeneca, Pfizer, and Merck, among others devoted to fostering innovation and integration of green chemistry and 
engineering tenets into the entire pharmaceutical process [12]. Since 2020, nine anti-cancer drugs have been approved 
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by the FDA, which are the subject of discussion here in terms of the challenges pertaining to the cost-effectiveness 
and environmental impact of these compounds from the green chemistry perspective.  

Herein, recent FDA-approved anticancer drugs in 2020-2021, their mechanism of action, financial challenges, and 
associated environmental hazards are deliberated, with possible solutions that may reduce not only the costs of the 
drugs but also the environmental pollution involved in the synthesis of anticancer drugs via greener pathways by 
appropriate substitution. 

 
2. FDA-approved anticancer drugs in 2020-2021 and mechanism of action 

Our first step is to have an overview of the new FDA-approved anticancer drugs for 2020-2021, which is followed 
by a synopsis of their prices and performances. 

 
2.1. Tepotinib 

In March 2020, the Japanese Food and Drug Administration approved Tepotinib for use in metastatic NSCLC with 
MET alterations, and the US Food and Drug Administration granted accelerated approval in 2021 under the brand 
name Tepmetko in the treatment of adult patients with metastatic NSCLC and MET exon 14 skipping alterations 
[13,14]. 
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2.2. Capmatinib 
It is marketed under the brand name Tabrecta which is a Kinase Inhibitor. In addition to inhibiting Mesenchymal 

Epithelial Transition, this drug also inhibits Cytochrome P450 1A2, P-Glycoprotein, and Breast Cancer Resistance 
Protein, as well as Multidrug and Toxin Extrusion Transporter 1. According to an FDA-approved 2020 treatment, 
capmatinib is indicated for adults with metastatic non-small cell lung cancer in which the tumors have an exon 14 
skipping mutation [15–17]. 
 

 
 
 

2.3. Pralsetinib 
In 2020, the FDA approved Pralsetinib, also known as Gavreto, as an orally bioavailable selective inhibitor that 

treats non-small cell lung cancer (NSCLC) for:  
(i) adult and pediatric patients aged 12 and older with advanced or metastatic RET fusion-positive thyroid cancer 

requiring systemic therapy  
(ii) adult and pediatric patients aged 12 and older with advanced or metastatic RET-mutant medullary thyroid 

cancer requiring systemic therapy.  
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(iii)  adult patients with metastatic RET fusion-positive NSCLC [18–20]. 
 

 

 
2.4. Selpercatinib 

           In 2020, Selpercatinib (RETEVMO™) was approved for use in the US as an orally bioavailable selective RET 
(rearranged during transfection) inhibitor for adults and children with advanced or metastatic RET-mutant MTC. 
Selpercatinib has also been approved for treating patients with advanced or metastatic RET fusion-positive thyroid 
cancer who are reactive to radioactive iodine (if radioactive iodine is appropriate) [21].  
 

 
 
 
2.5. Lurbinectedin 

Oncogenic transcription inhibitor, lurbinectedin (ZEPZELCATM™) has been approved in the USA for the 
treatment of adult patients with metastatic SCLC that progressed after platinum-based chemotherapy in June 2020 and 
has been used in treatment for mesothelioma, chronic lymphocytic leukemia (CLL), breast cancer, and small-cell lung 
cancer (SCLC) [22,23]. 
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2.6. Ripretinib 
Rimatinib (QINLOCK™), an oral kinase inhibitor, received its initial FDA approval in May 2020 for the treatment 

of adults with advanced GIST who have previously received 3 or more kinase inhibitors. A novel type II tyrosine 
switch inhibitor, Ripretinib inhibits KIT and PDGFRA kinases including wild-type mutations, primary and secondary 
mutations, as well as other kinases, including PDGFRB, TIE2, VEGFR2, and BRAF [24,25]. 

 

 
 

2.7. Avapritinib 
Avapritinib (ayvakit™), one of a class of medical drugs known as kinase inhibitors, functions by blocking the 

activity of a protein that signals cancer cells to multiply; it was approved by the FDA in 2021 for PDGFRA exon 18 
(including D842V) mutant GIST and is in the USA for clinical development of this treatment for systemic 
mastocytosis and late-stage solid tumors [26,27]. 
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2.8. Tazemetostat 
As of January 2020, Tazemetostat (Tazverik™), a first-in-class small molecule inhibitor of zeste homolog 2 (EZH2), 

is approved for the treatment of adults and adolescents aged 16 and older with locally advanced or metastatic 
epithelioid sarcoma. Several other tumor types, including diffuse large B-cell lymphoma and mesothelioma, are also 
being evaluated in various countries around the world, with the US FDA accepting a new drug application for its use 
in follicular lymphoma for priority review [28,29]. 

 

 
 
 

 3. Financial challenges and solutions 
Table 1 illustrates the high average cost of these drugs. Hence, it makes sense to find ways to reduce the price of 

anticancer drugs for patients. Medicaid Drug Rebate Program provides one example of the impact that such 
negotiations may have on drug prices. In 1990, section 1927 of the Social Security Act authorized this program, which 
required drug manufacturers to enter into a national rebate agreement with the Secretary of Health and Human Services 
(HHS) in exchange for Medicaid coverage. In addition to the minimum rebate, manufacturers had to provide a rebate 
for price increases above the inflation rate after the drug was introduced. According to the Congressional Budget 
Office (CBO), Medicaid's average drug price was 27-38 % less than Medicare's part D average in 2010 [30–32]. 

 
Table 1.  A price list of anticancer drugs 

Number Name Amount Price Reference 

1 Tazemetostat 240 tablets (200 mg) 18,696$ [33,34] 

2 Avapritinib 

 

30 tablets (25mg) 37,089$ [33,35] 

3 Ripretinib 90 tablets (50mg) 37,074$ [33,36] 

4 Lurbinectedin 

 

4 mg powder 7,417$ [33,37] 

5 Selpercatinib 

 

120 capsules (80mg) 22,471$ [33,38] 

6 Pralsetinib 

 

60 capsules (100mg) 10,650$ [33,39] 

7 Capmatinib 

 

56 tablets (150mg) 10,528$ [33,40] 

8 Tepotinib 

 

30 tablets (225mg) 11,976$ [33,41] 

 
On the other hand, medicinal chemistry and drug discovery and development have been affected by cross-coupling 

reactions for more than two decades, a common pathway in the assembly of quite a few of these drugs. Drug discovery 
has been largely successful because chemists are attracted to reproducible and reliable reactions [42]. The palladium-
catalyzed cross-coupling reaction is involved in half of all C-C and C-heteroatom bond-forming reactions in the 
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development, discovery, and production of drugs [43,44]. A number of new anticancer approved by the FDA in 2020-
2021 have been synthesized deploying expensive and rare palladium, including Tepotinib [13,14], Capmatinib [15–
17], Pralsetinib [18–20], and Selpercatinib [21]. 

Palladium is a precious and expensive metal and its use as a disposable catalyst can be wasteful, and their complete 
removal from a reaction mixture is a challenging proposition, thereby contaminating both the products and the waste 
fluids [45]. Researchers have demonstrated that alternatives to palladium, such as cobalt, or other earth-abundant 
materials can be deployed for the synthesis of FDA-approved anti-cancer drugs by using inexpensive 3d transition 
metals [46,47]. 

 

4. Environmental challenges and greener solutions 

       Different drugs have been synthesized and produced in various pharmaceutical industrial factories in the past years, 
and the global community is aware of this need. Those industries that do not properly dispose of their waste can cause 
serious damage to aquatic ecosystems [48,49]. According to the principles of green chemistry, processes must be 
designed and used to reduce or eliminate hazardous substances so that the desired substances can be synthesized 
without producing toxic or hazardous substances [50–52]. As stated in the ACS report, half of the mass of a synthetic 
reaction is contained in the standard state, resulting in between 50-80 % of the waste from the reaction, which 
contributes to the degradation of the environment and pollution of water resources [53]. 
   According to the green chemistry tenets, dipolar aprotic solvents are to be avoided for reasons. Waste streams of 
large volumes of aqueous fluid are produced when separating products and removing or recovering bipolar dipolar 
aprotic solvents like DMF, THF, DMAc, and DMSO. These solvents can have CMR (Cancer-Mutagen-Reprotoxic) 
issues, such as reproductive toxicity, which puts human health at risk once they are introduced into the environment. 
Considering the issues raised above, it seems prudent to seek alternatives to common and harmful solvents. Although 
water or alcohol derivatives are green solvents, they are not as polarized as classic solvents [54–57]. 

Using the methods described in the references, new anticancer synthesis methods approved by the FDA in 2020-
2021 were examined, and 2-4 hazardous solvents were deployed in the manufacture of these drugs, as shown in Table 

2.  
Table 2.  Hazardous solvents used in synthesis new anticancer drugs 

Name DCE1 DMF2 DMSO3 DCM4 THF5 DMA6 TEA7 DMAP8 Ref 

Tazemetostat - 
 

DMF DMSO - - - - - [33,34] 

Avapritinib 

 

- - - - THF - TEA - [33,35] 

Ripretinib - - - DMC THF - TEA - [33,36] 

Lurbinectedin 

 

- - DMSO - - - - DMAP [33,37] 

Selpercatinib DCE 
 

DMF 
 

DMSO - - - - - [33,38] 

Pralsetinib 

 

- DMF 
 

- - THF DMA - - [33,39] 

Capmatinib 

 

- DMF DMSO DMC - - TEA - [33,40] 

Tepotinib 

 

- DMF - - THF - - - [33,41] 

1DCE: 1,2-dichloroethane; 2DMF: N,N-Dimethylformamide; 3DMSO: Dimethyl sulfoxide; 4DMC: Dimethyl carbonate; 
5THF:Tetrahydrofuran; 6DMA: Dimethylacetamide; 7TEA: Triethylamine; 8DMAP: 4-Dimethylaminopyridine  

Table 3, describes which drugs require each solvent usage, along with the associated risk of each solvent separately. 

 

 

 



Materials Chemistry Horizons 

 
 

Materials Chemistry Horizons | 2022, 1(3), 189-198  195 

RESEARC

H 

REVIEW 

Table 3.  Solvents used to make cancer-fighting compounds and the risks involved 

Solvent  Hazards Reference 

DCE Selpercatinib 
 

Chemical Burns, Pulmonary Edema, Liver, and Renal 
Dysfunctions 

[58] 

DMF Tazemetostat 

Selpercatinib 

Pralsetinib 

Capmatinib 

Tepotinib 

kidneys Toxic for Reproduction,  
Explosion  

 
[59] 

DMSO 

 

Tazemetostat 

Lurbinectedin 

Selpercatinib 

Capmatinib 

Explosion [60–62] 

DCM Ripretinib 

Pralsetinib 

Capmatinib 

Biliary-tract Cancer and nonHodgkin Lymphoma [63] 

THF 

 

Avapritinib 

Ripretinib 

Pralsetinib 

Tepotinib 

Flammable, Exposure, Damage the liver and 
 
 

[64] 
 
 

DMA Pralsetinib Toxic Hepatitis [65] 

TEA  Avapritinib 

Ripretinib 
Damage to liver and kidneys, Flammable and dangerous fire 

hazard 
[66] 

DMAP  Lurbinectedin Highly toxic by skin absorption [67] 

 

   In looking for a high-polarity and non-dangerous green solvent, one comes across biobased solvent gamma (γ)-
valerolactone (GVL) with distinct physicochemical properties. The estimated K-T parameters (α=0, β=0.6, π*=0.83) 
suggested that GVL is an excellent choice of a sustainable alternative to common polar aprotic solvents [68–70]. GVL 
can be synthesized from renewable feedstock (e.g., biomass waste and food waste) and the chemical is a naturally 
existing, safe, biodegradable, and nontoxic, chemical that even can be utilized as a food additive [71–73]. GVL shows 
promise as an alternative solvent to hazardous commercial solvents in the synthesis of FDA-approved anticancer drugs 
Fedratinib (treatment of myelofibrosis in adults with bone marrow cancer) and Abemaciclib (treatment of hormone-
receptor-positive breast cancer) and Ponatinib (multi-tyrosine kinase inhibitor, anti-sarcomas cancer agent, and a drug 
for common neurodegenerative diseases) [46,47,74–77]. 

 

5. Conclusions 
   The impetus required to address the issue of excessive costs of anticancer and associated environmental challenges 
for the synthesis is strong, and proposals as to how to best address this issue have been both diverse and creative. We 
believe the untenable option is the existing condition. As a result: i) programs have already been implemented by 
organizations such as Health and Human Services (HHS); ii) alternatives to precious metals such as palladium, and 
deployment of cobalt or other coinage metals, can be used to synthesize FDA-approved anti-cancer drugs, especially 
pathway exploiting the use of inexpensive 3d transition metals; and iii) biobased solvents, such as gamma-
valerolactone (GVL), instead of hazardous solvents can be used to overcome economic and environmental challenges. 
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