[1] J. Chen, C.-M. Li, J. Wang, S. Ahn, Z. Wang, Y. Lu, J.T. Dalton, D.D. Miller, W. Li, Synthesis and antiproliferative activity
of novel 2-aryl-4-benzoyl-imidazole derivatives targeting tubulin polymerization, Bioorg. Med. Chem. 19(16) (2011) 4782-
4795.
[2] I. Semenyuta, V. Kovalishyn, V. Tanchuk, S. Pilyo, V. Zyabrev, V. Blagodatnyy, O. Trokhimenko, V. Brovarets, L. Metelytsia, 1,3-Oxazole derivatives as potential anticancer agents: Computer modeling and experimental study, Comput Biol Chem. 65 (2016) 8-15.
[3] D. Havrylyuk, B. Zimenkovsky, O. Vasylenko, C.W. Day, D.F. Smee, P. Grellier, R. Lesyk, Synthesis and biological activity
evaluation of 5-pyrazoline substituted 4-thiazolidinones, Eur. J. Med. Chem. 66 (2013) 228-237.
[4] T. Maekawa, N. Sakai, H. Tawada, K. Murase, M. Hazama, Y. Sugiyama, Y. Momose, Synthesis and Biological Activity of
Novel 5-(ω-Aryloxyalkyl)oxazole Derivatives as Brain-Derived Neurotrophic Factor Inducers, Chem. Pharm. Bull. 51(5) (2003) 565-573.
[5] M.U. Fatih, Rationally Designed Anti-mitotic Agents with Pro-Apoptotic Activity, Curr. Pharm. Des. 7(16) (2001) 1627-1639.
[6] S. Eswaran, A.V. Adhikari, R. Ajay Kumar, New 1,3-oxazolo[4,5-c]quinoline derivatives: Synthesis and evaluation of
antibacterial and antituberculosis properties, Eur. J. Med. Chem. 45(3) (2010) 957-966.
[7] M. Kaspady, K.V. Narayanaswamy, M. Raju, K.G. Rao, Synthesis, Antibacterial Activity of 2,4-Disubstituted Oxazoles and
Thiazoles as Bioisosteres, Lett Drug Des Discov. 6(1) (2009) 21-28.
[8] G.A. Elmegeed, A.R. Baiuomy, M.M. Abdelhalim, H.Y. Hana, Synthesis and Antidepressant Evaluation of Five Novel
Heterocyclic Tryptophan-Hybrid Derivatives, Arch. Pharm. 343(5) (2010) 261-267.
[9] P. Gajdoš, P. Magdolen, P. Zahradník, P. Foltínová, New Conjugated Benzothiazole-N-oxides: Synthesis and Biological
Activity, Molecules. 14(12) (2009) 5382-5388.
[10] K.R. Phatangare, B.N. Borse, V.S. Padalkar, V.S. Patil, V.D. Gupta, P.G. Umape, N. Sekar, Synthesis, photophysical property study of novel fluorescent 4-(1,3-benzoxazole-2-yl)-2-phenylnaphtho[1,2-d][1,3]oxazole derivatives and their antimicrobial activity, J. Chem. Sci. 125(1) (2013) 141-151.
[11] M.V. Kachaeva, S.G. Pilyo, V.V. Zhirnov, V.S. Brovarets, Synthesis, characterization, and in vitro anticancer evaluation of
2-substituted 5-arylsulfonyl-1,3-oxazole-4-carbonitriles, Curr. Med. Chem. 28(1) (2019) 71-80.
[12] K.A.Z. Siddiquee, P.T. Gunning, M. Glenn, W.P. Katt, S. Zhang, C. Schroeck, S.M. Sebti, R. Jove, A.D. Hamilton, J. Turkson, An Oxazole-Based Small-Molecule Stat3 Inhibitor Modulates Stat3 Stability and Processing and Induces Antitumor Cell Effects, ACS Chem. Biol. 2(12) (2007) 787-798.
[13] Z. Jin, Muscarine, imidazole, oxazole, and thiazole alkaloids, Nat. Prod. Rep. 28(6) (2011) 1143-1191.
[14] A.D. Chen, J.H. Herbort, E.A. Wappes, K.M. Nakafuku, D.N. Mustafa, D.A. Nagib, Radical cascade synthesis of azoles via tandem hydrogen atom transfer, Chem. Sci. J. 11(9) (2020) 2479-2486.
[15] S.R. Shinde, P. Girase, S. Dhawan, S.N. Inamdar, V. Kumar, C. Pawar, M.B. Palkar, M. Shinde, R. Karpoormath, A systematic appraisal on catalytic synthesis of 1,3-oxazole derivatives: A mechanistic review on metal-dependent synthesis,
Commun. 52 (2022) 1-36.
[16] M.D. Esrafili, R. Nurazar, Potential of C-doped boron nitride fullerene as a catalyst for methanol dehydrogenation,Comput. Mater. Sci. 92 (2014) 172-177.
[17] M. Sun, X. Wang, X. Shang, X. Liu, M. Najafi, Investigation of performance of aluminum-doped carbon nanotube (8, 0) as an adequate catalyst to oxygen reduction reaction, J. Mol. Graph. Model. 92 (2019) 123-130.
[18] M. Ghanbari, S. Afshari, S.A. Nabavi Amri, New capability of graphene as hydrogen storage by Si and/or Ge doping: Density functional theory, Int. J. Hydrog. Energy. 45(43) (2020) 23048-23055.
[19] Z. Zhou, E.K. Orcutt, H.C. Anderson, K.J. Stowers, Hydrogen surface modification of a carbon nanotube catalyst for the
improvement of ethane oxidative dehydrogenation, Carbon Lett. 152 (2019) 924-931.
[20] S.M. Bouzzine, S. Bouzakraoui, M. Bouachrine, M. Hamidi, Density functional theory (B3LYP/6-31G*) study of
oligothiophenes in their aromatic and polaronic states, Journal of Molecular Structure: Theochem. 726(1) (2005) 271-276.
[21] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen,
S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General atomic and molecular electronic structure system, J. Comput. Chem. 14(11) (1993) 1347-1363.
[22] E. Shakerzadeh, S. Noorizadeh, A first-principles study of pristine and Al-doped boron nitride nanotubes interacting with platinum-based anticancer drugs, Phys. E: Low-Dimens. Syst. Nan. 57 (2014) 47-55.
[23] R. Meenashi, K. Selvaraju, A.D. Stephen, C. Jelsch, Theoretical crystal structure prediction of aminosalicylic acid: Charge density topological and electrostatic analyses, J. Mol. Struct. 1213 (2020) 128139.