Photocatalytic Degradation of Sumatriptan Succinate by ZnO, Fe Doped ZnO and TiO2-ZnO Nanocatalysts

Document Type : Original Article

Authors

School of Chemistry, Damghan University, Damghan 36716-45667, I.R. Iran

Abstract

Pharmaceutical pollutants are toxic trace components in natural environment. In this work, removing of Sumatriptan Succinate from the contaminated water by photocatalytic degradation reaction was investigated. Nano particles of ZnO, Fe (0.01 and 0.05) doped ZnO and TiO2-ZnO composites were constructed by co precipitation method and characterized by FTIR, XRD, XRF, TGA, FE-SEM, BET-BJH and UV-Vis spectroscopy methods. Then, the effects of various operating parameters of reaction temperature (10 to 80°C), reaction time (15 to 60 min), pH of solution (4-11), concentration of pharmaceutical pollutant (8 to 25 ᵡ10-6 M), dose of nanocatalysts (0.8 to 4.5 mg) and the stability or reusability of produced nanocatalysts on the degradation efficiency were studied. Based on the reported results, maximum degradation efficiency is about 70% for Fe (0.05) doped ZnO with 60 min reaction time, 1.5 mg catalyst weight and contaminating concentration of 8ᵡ10-6 M.

Graphical Abstract

Photocatalytic Degradation of Sumatriptan Succinate by ZnO, Fe Doped ZnO and TiO2-ZnO Nanocatalysts

Keywords


 [1] B. Marinho, L. Suhadolnik, B. Likozar, M. Hus, M. Ziva, M. Ceh, Photocatalytic, electrocatalytic and photoelectrocatalytic degradation of pharmaceuticals in aqueous media: Analytical methods, mechanisms, simulation, catalysts and reactors, J. Clean. Prod. 343 (2022) 131061.
[2] F. Zhao, S. Fang, Y. Gao, J. Bi, Removal of aqueous pharmaceutical by magnetically functionalized Zr-MOFs: adsorption
Kinetics, Isotherms, and regeneration, J. Coll. Inter. Sci. 615 (2022) 876-886.
[3] A. Heidari, M.N. Lotfollahi, H. Baseri, Regeneration of activated carbon loaded with cyclohexane using supercritical carbon dioxide: experimental results and modeling, Chem. Eng. Technol. 36 (2013), 315-322.
[4] H. Baseri, A. Haghighi-Asl, M.N. Lotfollahi, Thermodynamic modeling of solid solubility in supercritical carbon dioxide:
comparison between mixing rules, Chem. Ind. Chem. Eng. Q. 9 (2013) 389-398.
[5] B. Tiwari, B. Sellamuthu, Y. Ouarda, P. Drogui, R.D. Tyagi, G. Buelna, Review on fate and mechanism of removal of
pharmaceutical pollutants from wastewater using biological approach, Bioresour. Technol. 224 (2016) 1–12.
[6] S. K. Behera, H. W. Kim, J. E. Oh, H. S. Park,Occurrence and removal of antibiotics, hormones and several other
pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea, Sci. Total Environ. 409 (2011) 4351-
4360.
[7] M. Kim, P. Guerra, A. Shah, M. Parsa, M. Alaee, S. A. Smyth, Removal of pharmaceuticals and personal care products in a membrane bioreactor wastewater treatment plant,Water Sci. Technol. 69(2014) 2221-2229.
[8] A. Puga, M.M. Moreira, M. Pazos, S.A. Fiogueiredo, M.A. Sanroman, C.D. Matos, E. Rosales, Continuous adsorption studies of pharmaceuticals in multicomponent mixtures by agroforestry biochar, J. inviron. Chem. Eng. 10 (2022) 106977.
[9] I. Zielinska, P. Daniel, S. Maciej, Analysis of the adsorption of selected pharmaceuticals on a composite material
PEBAX/GO, J. Water Proc. Eng. 44 (2021) 102272.
[10] D. Xia, W. Wang, R. Yin, Z. Jiang, T. An, G. Li, P. K. Wong, Enhanced photocatalytic inactivation of Escherichia coli by
a novel Z-scheme g-C3N4/m-Bi2O4 hybrid photocatalyst under visible light: The role of reactive oxygen species, Appl.
Catal. B. 214 (2017) 23-33.
 
 [11] T. N. J. I. Edison, M. G. Sethuraman, Y. R. Lee, NaBH4 reduction of ortho and para-nitroaniline catalyzed by silver
nanoparticles synthesized using Tamarindus indica seed coat extract, Res. Chem. Intermed. 42(2016) 713-724.
[12] M. Farzadkia, A. Esrafili, M. A. Baghapour, Y. D. Shahamat, N. Okhovat,Degradation of metronidazole in aqueous solution by nano-ZnO/UV photocatalytic process, Desalin. Water Treat. 52 (2014) 4947-4952.
[13] S. B. Singh, P. K. Tandon,Catalysis: a brief review on nano-catalyst, J. Energy. Chem. Eng. 2(2014) 106-115.
[14] M. M. Khan, S. F. Adil, A. Al-Mayouf,Metal oxides as photocatalysts, J. Saudi Chem. Soc. 19 (2015) 462-464.
[15] A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and sizestrain plot methods,Solid StateSci. 13 (2011) 251-256.
[16] A. B. Djurisic, A. M. C. Ng, X. Y. Chen, ZnO nanostructures for optoelectronics: material properties and device
applications, Prog. Quant. Electron. 34 (2010) 191-259.
[17] J. N. Hasnidawani, H. N. Azlina, H. Norita, N. N. Bonnia, S. Ratim, E. S. Ali, Synthesis of ZnO nanostructures using solgel method, Procedia Chem. 19 (2016) 211-216.
[18] D. Sharma, S. Sharma, B.S. Kaith, J. Rajput, M. Kaur, Synthesis of ZnO nanoparticles using surfactant free in-air and
microwave method,Appl. Surf. Sci. 257 (2011) 9661-9672.
[19] R. S. Yadav, P. Mishra, A. C. Pandey, Growth mechanism and optical property of ZnO nanoparticles synthesized by
sonochemical method,Ultrason. Sonochem. 15 (2008) 863-868.
[20] L. E. Shi, Z. H. Li, W. Zheng, Y. F. Zhao, Y. F. Jin, Z. X. Tang, Synthesis, antibacterial activity, antibacterial mechanism
and food applications of ZnO nanoparticles: a review, Food Addit. Contam. 31 (2014) 173-186.
[21] P. M. Aneesh, K. A. Vanaja, M. K. Jayaraj, Synthesis of ZnO nanoparticles by hydrothermal method, Nanophotonic Mater. 6639 (2007), 66390J-1.
[22] R.M. Mohamed, D.L. McKinney,W.M. Sigmund, Enhanced nanocatalysts, Mater. Sci. Eng. 73 (2012) 1-13.
[23] K. N. Prashanth, K. Basavaiah, C. M. Xavier, Development and validation of UV spectrophotometric methods for the
determination of sumatriptan succinate in bulk and pharmaceutical dosage form and its degradation behavior under varied stress conditions, J. Assoc. Arab Univ. Basic Appl. Sci. 15(2014) 43-52.
[24] X. Xu, M. G. Bartlett, J. T. Stewart,Determination of degradation products of sumatriptan succinate using LC-MS and LCMS-MS, J. Pharm. Biomed. Anal. 26(2001) 367-377.
[25] B.D. Cullity, S.R. Stock,Elements of X-ray Diffraction, third ed., Prentice Hall, New York, 2001.
[26] M.Jafari, S.Razavein, A. Saffar, Synthesis and characterization of
TiO2-ZnO-xAl2O3 Nano-composite, Proceedings,
MONTRÉAL’2014 AES-ATEMA 17
th Int. Conference, Montréal, Canada, (2014) 153–158.
[27] M. Sharma, C. Kothari, O. Sherikar, P. Mehta, Concurrent Estimation of Amlodipine Besylate, Hydrochlorothiazide and
Valsartan by RP-HPLC, HPTLC and UV–Spectrophotometry, J. Chromatogr. Sci. 52 (2013) 27-35.
[28] Y. T. Prabhu, K. V. Rao, V. S. S. Kumar, B. S. Kumari, synthesis of ZnO nanoparticles by novel surfactant assisted amine
combustion method,Adv. Nanopart. 2 (2013) 45-54.
[29] M. I. Khalil, M. M. Al-Qunaibit, A. M. Al-Zahem, J. P. Labis, Synthesis and characterization of ZnO nanoparticles by
thermal decomposition of a curcumin zinc complex, Arabian J. Chem. 7 (2014) 1178-1184.
[30] A.J. Reddy, M.K. Kokila, H. Nagabhushan, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushan, Structural,
optical and EPR studies on ZnO: Cu nanopowders prepared via low temperature solution combustion synthesis, J. Alloys
Compd. 509 (2011) 5349–5355.
[31] R.A. Nyquist, R. Kagel, Infrared Spectra of Inorganic Compounds, Academic Press, Inc., New York, London, 1971. p. 220.
[32] S. Tizro, H. Baseri, Heavy Metals Removal from Wastewater by Using Different Kinds of Magnetite Nano-Adsorbents:
Effects of Different Organic and Inorganic Coatings on The Removal of Copper and Lead Ions, Adv. Mater. Process. 4(4)
(2016) 15-29.
[33] E. Alizadeh, H. Baseri, Catalytic degradation of Amlodipine Besylate using ZnO, Cu doped ZnO, and Fe doped ZnO
nanoparticles from an aqueous solution: Investigating the effect of different parameters on degradation efficiency, Solid
State Sci. 78 (2018) 86-94.
[34] J. Singh, J. K. Yang, Y. Y. Chang, Rapid degradation of phenol by ultrasound-dispersed nano-metallic particles (NMPs) in the presence of hydrogen peroxide: A possible mechanism for phenol degradation in water, J Environ Manage. 175 (2016) 60-66.
[35] B. Thokchom, P. Qiu, M. Cui, B. Park, A. B. Pandit, J. Khim, Magnetic Pd@ Fe
3O4 composite nanostructure as recoverable catalyst for sonoelectrohybrid degradation of Ibuprofen, Ultrason. Sonochem.34 (2017) 262-272.
[36] Q. Yuan, W. Deng, Q. Zhang, Y. Wang, Osmium
Catalyzed Selective Oxidations of Methane and Ethane with Hydrogen Peroxide in Aqueous Medium, Adv. Synth. Catal. 349 (2007) 1199-1209.
[37] Y. Junejo, A. Güner, A. Baykal,Synthesis and characterization of amoxicillin derived silver nanoparticles: Its catalytic
effect on degradation of some pharmaceutical antibiotics, Appl. Surf. Sci. 31 (2014) 914-922.
 [38] H. Benhebal, M. Chaib, T. Salmon, J. Geens, A. Leonard, S. D. Lambert, B. Heinrichs, Photocatalytic degradation of phenol
and benzoic acid using zinc oxide powders prepared by the sol–gel process, Alexandria Eng. J. 52 (2013) 517-523.
[39]Z. Ž. Stoiljković, M. B. Jadranin, S. L Đurić, S. D. Petrović, A. M. L. Ivić, D. Ž. Mijin, Investigation of forced and total
degradation products of amlodipine besylate by liquid chromatography and liquid chromatography-mass spectrometry,
Chem. Ind. Chem. Eng. Q. 20(2014) 295-304.
[40] N. Modirshahla, M. A. Behnajady,Photooxidative degradation of Malachite Green (MG) by UV/H2O2: Influence of
operational parameters and kinetic modeling, Dyes Pigm. 70 (2006) 54-59.
[41] E. Shokati fard, H. Baseri, ZnO-based composite catalysts for photocatalytic degradation of reactive black 5, and the
optimization of process parameters, Water. Environ. J. (2022) 1-14.
[42] M. R. D. P.Blessy, R. D. Patel, P. N. Prajapati, Y. K. Agrawal, Development of forced degradation and stability indicating
studies of drugs—A review, J. Pharm. Anal. 4(2014) 159-165.
[43] D. Saxena, S. Damale, A. Joshi, A. Datar, Forced degradation studies of amlodipine besylate and characterization of its
major degradation products by LC-MS/MS, Int. J. Life Sci. Biotechnol. Pharma Res. 3 (2014) 196-173.
[44] M. Rahal, Y. Atassi, I. Alghoraibi. Preparation of separable Mn Fe2O4/ZnO/CQDs as a visible light photocatalyst for
Gentamicin treatment, Mater. Chem. Phys. 286 (2022) 126123.
[45] A.M. Mostafa, E.A. Mwafy, Synthesis of Zn/CdO thin film for catalytic degradation of 4-nitrophenol, J. Mol. Struct. 1221 (2020) 128872.
[46] N. Nasseh, M.T. Samadi, M. Ghadirian, A.H. Panahi, A.Rezaie, Photo-catalytic degradation of tamoxifen by using a novel synthesized magnetic nanocomposite of FeCl2@ac@ZnO: A study on the pathway, modeling, and sensitivity analysis using artificial neural network (AAN), J. Environ. Chem. Eng. 10(3) (2022) 107450.