Synthesis of Poly (N-vinylpyrrolidone)-grafted-Magnetite Bromoacetylated Cellulose via ATRP for Drug Delivery

Document Type : Original Article

Authors

Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 57153-165, Iran

Abstract

In the present article, we have reported a detailed study of the surface modification for magnetite nanoparticles (MNP, Fe3O4) using a natural, biodegradable, and biocompatible polymer. For this purpose, the cellulose was converted to its bromoacetylated derivative (BACell) by reacting with bromoacetyl bromide. Next, the MNPs were functionalized by the reaction of the hydroxyl groups with the methylene bromide of the prepared BACell to form Fe3O4/BACell. Then, the atom transfer radical polymerization (ATRP) method was developed for the covalent immobilization of the N-vinylpyrrolidone (NVP) on the Fe3O4/BACell surface to produce the Fe3O4/Cellulose-grafted NVP (Fe3O4/Cell-NVP) as a novel synthetic product. The Fourier transform infrared spectroscopy (FT-IR) indicated the presence of copolymer on the MNPs surface. Moreover, the thermogravimetric analysis (TGA) results of the Fe3O4/Cell-NVP indicated that there had been an acceptable percentage of the content of polymer chains on the surface of the Fe3O4 nanoparticles. Furthermore, the structure and magnetic properties of the Fe3O4/Cell-NVP were confirmed by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and scanning electron microscopy (SEM). The loading capacity and release profiles of Doxorubicin (DOX) as a model drug from the Fe3O4/Cell-NVP were determined by UV–Vis absorption measurement at λmax=483 nm. The results showed that the DOX-loaded nanoparticles had been well controlled during the release period of the DOX. Therefore, it seems that the Fe3O4/Cell-NVP is an appropriate candidate for the controlled and targeted delivery of cancer treatment.

Graphical Abstract

Synthesis of Poly (N-vinylpyrrolidone)-grafted-Magnetite Bromoacetylated Cellulose via ATRP for Drug Delivery

Keywords


 [1] R. Mannu, V. Karthikeyan , N. Velu, Ch. Arumugam, et. al., Polyethylene Glycol Coated Magnetic Nanoparticles: Hybrid
Nanofluid Formulation, Properties and Drug Delivery Prospects, Nanomaterials. 11 (2021) 440.
[2] M. Eskandari, S.H. Hosseini, M. Adeli, A. Pourjavadi, Polymer-functionalized carbon nanotubes in cancer therapy: a review, Iran Polym J. 23 (2014) 387-403.
[3] M. Mahmoudi, A. Simchi, M. Imani, P. Stroeve, A. Sohrabi, Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly (vinyl alcohol), Thin Solid Films. 518 (2010) 4281-4289.
[4] S. Beun, T. Glorieux, J. Devaux, J. Vreven, G. Leloup, Characterization of nanofilled compared to universal and microfilled composites, Dent Mater. 23 (2007) 51-59.
[5] M. Du, B. Guo, D. Jia, Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene
), Eur Polym.J. 42 (2006) 1362-1369.
[6] A. Erten, W. rasidlo, M. Scadeng, S. Esener, R.M. Hoffman, M. Bouvet, M. Makale, Magnetic resonance and fluorescence
imaging of doxorubicin-loaded nanoparticles using a novel in vivo model, Nanomedicine. 6 (2010) 797-807.
[7] F. Sharifianjazi, M. Irani, A. h. Esmaeilkhanian, L. Bazli, et.al., Polymer incorporated magnetic nanoparticles: Applications for magnetoresponsive targeted drug delivery, Mater. Sci. Eng B. 272 (2021) 115358.
[8] J.M. Shen, F.Y. Gao, T. Yin, H.X. Zhang, M. Ma, Y.J. Yang, F. Yue, cRGD-functionalized polymeric magnetic nanoparticles
as a dual-drug delivery system for safe targeted cancer therapy, Pharmacol Res. 70 (2013) 102-115.
[9] H. Wang, Y. Zhao, Y. Wu, Y. Hu, K. Nan, G. Nie, Chen, H. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles, Biomaterials. 32 (2011) 8281-8290.
[10] E. kianfar, Magnetic Nanoparticles in Targeted Drug Delivery: A Review, J. Supercond. Nov. Magn. 34 (2021)1709–1735.
[11] M. Mohammad-Taheri, E. Vasheghani-Farahani, H. Hosseinkhani, S.A. Shojaosadati, M. Soleimani, Fabrication and
characterization of a new MRI contrast agent based on a magnetic dextran–spermine nanoparticle system, Iran Polym J. 21 (2012) 239-251.
[12] Y. Choi, Electron Spin Resonance (ESR) and Microwave Absorption Studies of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Hyperthermia Applications, J Korean Ceram Soc. 48 (2011) 577-583.
[13] E.V. Groman, J.C. Bouchard, C. P. Reinhardt, D.E.Vaccaro, Ultrasmall Mixed Ferrite Colloids as Multidimensional Magnetic Resonance Imaging, Cell Labeling, and Cell Sorting Agents
, Bioconjug Chem. 18 (2007) 1763-1771.
[14] C. Fang, M.Q. Zhang, Multifunctional magnetic nanoparticles for medical imaging applications
, J Mater Chem. 19 (2009) 6258-6266.
[15] H. Li, L. Qin, Y. Feng, L. Hu, C. Zhou, Preparation and characterization of highly water-soluble magnetic Fe
3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate, J Magn Mater. 384 (2015) 213-218.
[16] J. Cai, J. Guo, M. Ji, W. Yang, C. Wang, S. Fu, Preparation and characterization of multiresponsive polymer composite
microspheres with core–shell structure. Colloid Polym Sci. 285 (2007) 1607-1615.
[17] S. Wan, J. Huang, H. Yan, K. Liu, Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J. Mater Chem. 16 (2006) 298-303.
[18] O. Prucker, J. Ruhe, Synthesis of Poly(styrene) Monolayers Attached to High Surface Area Silica Gels through SelfAssembled Monolayers of Azo Initiators. Macromolecules. 31 (1998) 592-601.
[19] Zhao, B., Brittain, W. Polymer brushes: surface-immobilized macromolecules, J. Prog Polym Sci. 25 (2000) 677-710.
[20] Wang, H. J., Zhou, W. H., Yin, X. F., Zhuang, Z. X., Yang, H. H., Wang, X. R. Template Synthesized Molecularly Imprinted
Polymer Nanotube Membranes for Chemical Separations, J Am Chem Soc. 128 (2006) 15954-15955.
[21] A. Elaissari, H. Fessi, Reactive and Highly Submicron Magnetic Latexes for Bionanotechnology Applications, Macromol
Symp. 288 (2010) 115-120.
[22] S. Kayal, R.V. Ramanujan, Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery, Mater Sci Eng C. 30 (2010) 484-490.
[23] M. M. Eissa, M. M. Rahman, N. Zine, N. Jaffrezic, A. Errachid, H. Fessi, A. Elaissari, Reactive magnetic poly (divinylbenzeneco-glycidyl methacrylate) colloidal particles for specific antigen detection using microcontact printing technique, Acta Biomater. 9 (2013) 5573-5582.
[24] S. R. Ryoo, H. Jang, K. S. Kim, B. Lee, K. B. Kim, Y.K. Kim, W. S. Yeo, Y. Lee, D. E. Kim, D.H Min, Functional delivery
of DNAzyme with iron oxide nanoparticles for hepatitis C virus gene knockdown. Biomaterials. 33 (2012) 2754-2761.
[25] H. Rusli, S. Gandasasmita, M. B. Amran, Cellulose acetate–silica fume membrane: characterization and application for
separation of starch and maltose, Iran Polym J. 22 (2013) 335-340.
[26] S. Ehsanimehr, P. N. Moghadam,W.Dehaen,V. Shafiei- Irannejad, Synthesis of pH-sensitive nanocarriers based on
polyacrylamide grafted nanocrystalline cellulose for targeted drug delivery to folate receptor in breast cancer cells, European Polymer Journal 150 (2021) 110398.
[27] S. D. Ribeiro, G. R. Filho, A. B. Meneguin, F. G. Prezotti, F. I. Boni, B. S. F. Cury, M. P. D. Gremião, Cellulose triacetate
films obtained from sugarcane bagasse: Evaluation as coating and mucoadhesive material for drug delivery systems, Carbohydr. Polym. 152 (2016) 764-774.
[28] L. C. Fidale, M. Nikolajski, T. Rudolph, S. Dutz, F. H. Schacher, T. Heinze, Hybrid Fe
3O4@amino cellulose nanoparticles
in organic media – Heterogeneous ligands for atom transfer radical polymerizations, J Colloid Interface Sci. 390 (2013) 25-33.
[29] N. Mallicka, M. Asfer, M. Anwar, A. Kumar, M. Samim, S. Talegaonkar, F. Ahmad, Rhodamine-loaded, cross-linked,
carboxymethyl cellulose sodium-coated super-paramagnetic iron oxide nanoparticles: Development and
in vitro localization study for magnetic drug-targeting applications, J. Colloids Surf A. 481 (2015) 51-62.
[30] R. Elumalai, S. Patil, N. Maliyakkal, A. Rangarajan, P. Kondaiah, A. M. Raichur, Protamine-carboxymethyl cellulose
magnetic nanocapsules for enhanced delivery of anticancer drugs against drug resistant cancers, Nanomedicine. 11 (2015) 969-981.
[31] M. C. I. M. Amin, N. Ahmad, N. Halib, I. Ahmad, Synthesis and characterization of thermo-and pH-responsive bacterial
cellulose/acrylic acid hydrogels for drug delivery, Carbohydr. Polym. 88 (2012) 465– 473.
[32] Y. MinKim, Y. SukLee, T. Kim, K. Yang, K. Nam, D. Choe, Y. HoonRoh, Cationic cellulose nanocrystals complexed with
polymeric siRNA for efficient anticancer drug delivery, Carbohydr. Polym. 247 (2020) 116684.
[33] J. Song, N. L. Birbach,J. P. Hinestroza,Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups, Cellulose. 19 (2012) 411–424.
[34] S. Ehsanimehr, P. N. Moghadam,W.Dehaen, V. Shafiei- Irannejad, PEI grafted Fe
3O4@SiO2@SBA-15 labeled FA as a pHsensitive mesoporous magnetic and biocompatible nanocarrier for targeted delivery of doxorubicin to MCF-7 cell line, Colloids and Surfaces A: Physicochemical and Engineering Aspects 615 (2021) 126302.
[35] O. Ayala-Valenzuela, J. Matutes-Aquino, R. Betancourt-Galindo, L.A. Garcia-Cerda, F. O. Rodriíguez, P. C. Fannin, A. T.
Giannitsis, Characterization of soft ferromagnetic materials by inductance spectroscopy and magnetoimpedance, J Magn Mater. 294 (2005) 239-244.
[36] Z. Shokri, B. Zeynizadeh, S.A. Hosseini, One-pot reductive-acetylation of nitroarenes with NaBH4 catalyzed by separable core-shell Fe
3O4@Cu (OH) x nanoparticles, J. Colloid Interf. Sci. 485(2017) 99.
[37] F. Galeotti, F. Bertini, G. Scavia, A. Bolognesi, A controlled approach to iron oxide nanoparticles functionalization for
magnetic polymer brushes, J Colloid Interface Sci. 360 (2011) 540-547.
[38] T. Gürkan Polat, S.Demirel Topel, pH-responsive carboxymethyl cellulose conjugated superparamagnetic iron oxide
nanocarriers, J Sci Perspectives.3 (2019) 99-110.
[39] N. Zohreh, N. Karimi,S. H. Hosseini,C. Istrate ,C. Busuioc, Fabrication of a magnetic nanocarrier for doxorubicin delivery based on hyperbranched polyglycerol and carboxymethyl cellulose: An investigation on the effect of borax cross-linker on pHsensitivity.Int. J. Biol. Macromol.203 (2022) 80-92.