[1] R. Mannu, V. Karthikeyan , N. Velu, Ch. Arumugam, et. al., Polyethylene Glycol Coated Magnetic Nanoparticles: Hybrid
Nanofluid Formulation, Properties and Drug Delivery Prospects, Nanomaterials. 11 (2021) 440.
[2] M. Eskandari, S.H. Hosseini, M. Adeli, A. Pourjavadi, Polymer-functionalized carbon nanotubes in cancer therapy: a review, Iran Polym J. 23 (2014) 387-403.
[3] M. Mahmoudi, A. Simchi, M. Imani, P. Stroeve, A. Sohrabi, Templated growth of superparamagnetic iron oxide nanoparticles by temperature programming in the presence of poly (vinyl alcohol), Thin Solid Films. 518 (2010) 4281-4289.
[4] S. Beun, T. Glorieux, J. Devaux, J. Vreven, G. Leloup, Characterization of nanofilled compared to universal and microfilled composites, Dent Mater. 23 (2007) 51-59.
[5] M. Du, B. Guo, D. Jia, Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene), Eur Polym.J. 42 (2006) 1362-1369.
[6] A. Erten, W. rasidlo, M. Scadeng, S. Esener, R.M. Hoffman, M. Bouvet, M. Makale, Magnetic resonance and fluorescence
imaging of doxorubicin-loaded nanoparticles using a novel in vivo model, Nanomedicine. 6 (2010) 797-807.
[7] F. Sharifianjazi, M. Irani, A. h. Esmaeilkhanian, L. Bazli, et.al., Polymer incorporated magnetic nanoparticles: Applications for magnetoresponsive targeted drug delivery, Mater. Sci. Eng B. 272 (2021) 115358.
[8] J.M. Shen, F.Y. Gao, T. Yin, H.X. Zhang, M. Ma, Y.J. Yang, F. Yue, cRGD-functionalized polymeric magnetic nanoparticles
as a dual-drug delivery system for safe targeted cancer therapy, Pharmacol Res. 70 (2013) 102-115.
[9] H. Wang, Y. Zhao, Y. Wu, Y. Hu, K. Nan, G. Nie, Chen, H. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles, Biomaterials. 32 (2011) 8281-8290.
[10] E. kianfar, Magnetic Nanoparticles in Targeted Drug Delivery: A Review, J. Supercond. Nov. Magn. 34 (2021)1709–1735.
[11] M. Mohammad-Taheri, E. Vasheghani-Farahani, H. Hosseinkhani, S.A. Shojaosadati, M. Soleimani, Fabrication and
characterization of a new MRI contrast agent based on a magnetic dextran–spermine nanoparticle system, Iran Polym J. 21 (2012) 239-251.
[12] Y. Choi, Electron Spin Resonance (ESR) and Microwave Absorption Studies of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Hyperthermia Applications, J Korean Ceram Soc. 48 (2011) 577-583.
[13] E.V. Groman, J.C. Bouchard, C. P. Reinhardt, D.E.Vaccaro, Ultrasmall Mixed Ferrite Colloids as Multidimensional Magnetic Resonance Imaging, Cell Labeling, and Cell Sorting Agents, Bioconjug Chem. 18 (2007) 1763-1771.
[14] C. Fang, M.Q. Zhang, Multifunctional magnetic nanoparticles for medical imaging applications, J Mater Chem. 19 (2009) 6258-6266.
[15] H. Li, L. Qin, Y. Feng, L. Hu, C. Zhou, Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate, J Magn Mater. 384 (2015) 213-218.
[16] J. Cai, J. Guo, M. Ji, W. Yang, C. Wang, S. Fu, Preparation and characterization of multiresponsive polymer composite
microspheres with core–shell structure. Colloid Polym Sci. 285 (2007) 1607-1615.
[17] S. Wan, J. Huang, H. Yan, K. Liu, Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J. Mater Chem. 16 (2006) 298-303.
[18] O. Prucker, J. Ruhe, Synthesis of Poly(styrene) Monolayers Attached to High Surface Area Silica Gels through SelfAssembled Monolayers of Azo Initiators. Macromolecules. 31 (1998) 592-601.
[19] Zhao, B., Brittain, W. Polymer brushes: surface-immobilized macromolecules, J. Prog Polym Sci. 25 (2000) 677-710.
[20] Wang, H. J., Zhou, W. H., Yin, X. F., Zhuang, Z. X., Yang, H. H., Wang, X. R. Template Synthesized Molecularly Imprinted
Polymer Nanotube Membranes for Chemical Separations, J Am Chem Soc. 128 (2006) 15954-15955.[21] A. Elaissari, H. Fessi, Reactive and Highly Submicron Magnetic Latexes for Bionanotechnology Applications, Macromol
Symp. 288 (2010) 115-120.
[22] S. Kayal, R.V. Ramanujan, Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery, Mater Sci Eng C. 30 (2010) 484-490.
[23] M. M. Eissa, M. M. Rahman, N. Zine, N. Jaffrezic, A. Errachid, H. Fessi, A. Elaissari, Reactive magnetic poly (divinylbenzeneco-glycidyl methacrylate) colloidal particles for specific antigen detection using microcontact printing technique, Acta Biomater. 9 (2013) 5573-5582.
[24] S. R. Ryoo, H. Jang, K. S. Kim, B. Lee, K. B. Kim, Y.K. Kim, W. S. Yeo, Y. Lee, D. E. Kim, D.H Min, Functional delivery
of DNAzyme with iron oxide nanoparticles for hepatitis C virus gene knockdown. Biomaterials. 33 (2012) 2754-2761.
[25] H. Rusli, S. Gandasasmita, M. B. Amran, Cellulose acetate–silica fume membrane: characterization and application for
separation of starch and maltose, Iran Polym J. 22 (2013) 335-340.
[26] S. Ehsanimehr, P. N. Moghadam,W.Dehaen,V. Shafiei- Irannejad, Synthesis of pH-sensitive nanocarriers based on
polyacrylamide grafted nanocrystalline cellulose for targeted drug delivery to folate receptor in breast cancer cells, European Polymer Journal 150 (2021) 110398.
[27] S. D. Ribeiro, G. R. Filho, A. B. Meneguin, F. G. Prezotti, F. I. Boni, B. S. F. Cury, M. P. D. Gremião, Cellulose triacetate
films obtained from sugarcane bagasse: Evaluation as coating and mucoadhesive material for drug delivery systems, Carbohydr. Polym. 152 (2016) 764-774.
[28] L. C. Fidale, M. Nikolajski, T. Rudolph, S. Dutz, F. H. Schacher, T. Heinze, Hybrid Fe3O4@amino cellulose nanoparticles
in organic media – Heterogeneous ligands for atom transfer radical polymerizations, J Colloid Interface Sci. 390 (2013) 25-33.
[29] N. Mallicka, M. Asfer, M. Anwar, A. Kumar, M. Samim, S. Talegaonkar, F. Ahmad, Rhodamine-loaded, cross-linked,
carboxymethyl cellulose sodium-coated super-paramagnetic iron oxide nanoparticles: Development and in vitro localization study for magnetic drug-targeting applications, J. Colloids Surf A. 481 (2015) 51-62.
[30] R. Elumalai, S. Patil, N. Maliyakkal, A. Rangarajan, P. Kondaiah, A. M. Raichur, Protamine-carboxymethyl cellulose
magnetic nanocapsules for enhanced delivery of anticancer drugs against drug resistant cancers, Nanomedicine. 11 (2015) 969-981.
[31] M. C. I. M. Amin, N. Ahmad, N. Halib, I. Ahmad, Synthesis and characterization of thermo-and pH-responsive bacterial
cellulose/acrylic acid hydrogels for drug delivery, Carbohydr. Polym. 88 (2012) 465– 473.
[32] Y. MinKim, Y. SukLee, T. Kim, K. Yang, K. Nam, D. Choe, Y. HoonRoh, Cationic cellulose nanocrystals complexed with
polymeric siRNA for efficient anticancer drug delivery, Carbohydr. Polym. 247 (2020) 116684.
[33] J. Song, N. L. Birbach,J. P. Hinestroza,Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups, Cellulose. 19 (2012) 411–424.
[34] S. Ehsanimehr, P. N. Moghadam,W.Dehaen, V. Shafiei- Irannejad, PEI grafted Fe3O4@SiO2@SBA-15 labeled FA as a pHsensitive mesoporous magnetic and biocompatible nanocarrier for targeted delivery of doxorubicin to MCF-7 cell line, Colloids and Surfaces A: Physicochemical and Engineering Aspects 615 (2021) 126302.
[35] O. Ayala-Valenzuela, J. Matutes-Aquino, R. Betancourt-Galindo, L.A. Garcia-Cerda, F. O. Rodriíguez, P. C. Fannin, A. T.
Giannitsis, Characterization of soft ferromagnetic materials by inductance spectroscopy and magnetoimpedance, J Magn Mater. 294 (2005) 239-244.
[36] Z. Shokri, B. Zeynizadeh, S.A. Hosseini, One-pot reductive-acetylation of nitroarenes with NaBH4 catalyzed by separable core-shell Fe3O4@Cu (OH) x nanoparticles, J. Colloid Interf. Sci. 485(2017) 99.
[37] F. Galeotti, F. Bertini, G. Scavia, A. Bolognesi, A controlled approach to iron oxide nanoparticles functionalization for
magnetic polymer brushes, J Colloid Interface Sci. 360 (2011) 540-547.
[38] T. Gürkan Polat, S.Demirel Topel, pH-responsive carboxymethyl cellulose conjugated superparamagnetic iron oxide
nanocarriers, J Sci Perspectives.3 (2019) 99-110.
[39] N. Zohreh, N. Karimi,S. H. Hosseini,C. Istrate ,C. Busuioc, Fabrication of a magnetic nanocarrier for doxorubicin delivery based on hyperbranched polyglycerol and carboxymethyl cellulose: An investigation on the effect of borax cross-linker on pHsensitivity.Int. J. Biol. Macromol.203 (2022) 80-92.