Biosynthesized Nanomaterials with Antioxidant and Antimicrobial Properties

Document Type : Review Article

Authors

1 CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics and Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China

2 Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137–66731 Iran

3 Cellular and molecular research center, Medical Basic Sciences Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

4 Department of Chemistry, Isfahan University of Technology, Isfahan 415683111, Iran

5 Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan P.O. Box 65178-38736, Iran

6 Institute of Polymers, Composites, and Biomaterials—National Research Council (IPCB-CNR), Viale J.F. Kennedy 54—Mostra d'Oltremare pad. 20, 80125 Naples, Italy

7 Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal, 721302 India

8 Institute for Polymers, Composites, and Biomaterials, National Research Council, IPCB-CNR, 80125, Naples, Italy

9 Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy

10 Istituto Italiano di Tecnologia, Naples, Italy

11 Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina 29208, United States

12 Department of Chemistry, Soongsil University, Seoul, 06978, South Korea

13 Department of Chemical Engineering, The University of Johannesburg, P.O. Box 17011, Doornfontein 2088, South Africa

Abstract

Nanomaterials are structures with dimensions less than 100 nm. Among different nanomaterials, metal- and carbon-based nanoarchitectures have attracted interest due to their ease of production, biocompatibility, low cost, excellent physio-chemistry characteristics, and biological activities. They are synthesized by various methods such as physical, chemical, and biological methods Biosynthesized nanomaterials exhibit remarkably improved biological activities such as antioxidant and antibacterial capabilities. Antioxidant nanomaterials can shield molecules from oxidation processes by decelerating or preventing them from oxidizing in the first place. These nanomaterials are widely used in the food industries and biomedical sectors. Several factors (e.g., size, shape, composition, and synthesized procedure) may influence the antimicrobial activity of these nanocompounds. It was shown that biosynthesized nanomaterials have higher antioxidant and antimicrobial activities than those by conventional methods. In the present review, we overview the antioxidant and antimicrobial activities of biosynthesized metal- and carbon-based nanoarchitectures. In addition, the mechanism of antimicrobial activity, as well as commonly used methods to measure the antioxidant activity of nanomaterials, are highlighted.

Graphical Abstract

Biosynthesized Nanomaterials with Antioxidant and Antimicrobial Properties

Keywords


[1] S. LeBlanc, Nanotechnology as a Tool for Science and Scientific Literacy, in: Women Nanotechnol., Springer, 2020: pp.
15–27.
[2] P. Makvandi, N. Nikfarjam, N.S. Sanjani, N.T. Qazvini, Effect of silver nanoparticle on the properties of poly(methyl
methacrylate) nanocomposite network made by in situ photoiniferter-mediated photopolymerization, Bull. Mater. Sci. 38
(2015) 1625–1631.
[3] P. Makvandi, M. Ghaemy, A.A. Ghadiri, M. Mohseni, Photocurable, Antimicrobial Quaternary Ammonium–modified
Nanosilica, J. Dent. Res. 94 (2015) 1401–1407.
[4] P. Makvandi, C. Wang, E.N. Zare, A. Borzacchiello, L. Niu, F.R. Tay, Metal-based nanomaterials in biomedical
applications: Antimicrobial activity and cytotoxicity aspects, Adv. Funct. Mater. In Press (2020).
[5] R.R. Gaddam, S. Mukherjee, N. Punugupati, D. Vasudevan, C.R. Patra, R. Narayan, R. VSN Kothapalli, Facile synthesis
of carbon dot and residual carbon nanobeads: Implications for ion sensing, medicinal and biological applications, Mater.
Sci. Eng. C. 73 (2017) 643–652.
[6] G. V. Vimbela, S.M. Ngo, C. Fraze, L. Yang, D.A. Stout, Antibacterial properties and toxicity from metallic
nanomaterials, Int. J. Nanomedicine. 12 (2017) 3941–3965.
[7] E. Roy, S. Patra, S. Saha, R. Madhuri, P.K. Sharma, Shape-specific silver nanoparticles prepared by microwave-assisted
green synthesis using pomegranate juice for bacterial inactivation and removal, RSC Adv. 5 (2015) 95433–95442.
[8] S. Ahmed, Annu, S.A. Chaudhry, S. Ikram, A review on biogenic synthesis of ZnO nanoparticles using plant extracts and
microbes: A prospect towards green chemistry, J. Photochem. Photobiol. B Biol. 166 (2017) 272–284.
[9] N.I. Hulkoti, T.C. Taranath, Biosynthesis of nanoparticles using microbes-A review, Colloids Surfaces B Biointerfaces.
121 (2014) 474–483.
[10] L.S. Reddy Yadav, K. Manjunath, B. Archana, C. Madhu, H. Raja Naika, H. Nagabhushana, C. Kavitha, G. Nagaraju,
Fruit juice extract mediated synthesis of CeO2 nanoparticles for antibacterial and photocatalytic activities, Eur. Phys. J.
Plus. 131 (2016) 154.
[11] J. Virkutyte, R.S. Varma, Green synthesis of nanomaterials: Environmental aspects, in: ACS Symp. Ser., ACS
Publications, 2013: pp. 11–39.
[12] P. Makvandi, G.W. Ali, F. Della Sala, W.I. Abdel-Fattah, A. Borzacchiello, Biosynthesis and characterization of
antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound
healing, Carbohydr. Polym. 223 (2019) 115023.
[13] P. Makvandi, G.W. Ali, F. Della Sala, W.I. Abdel-Fattah, A. Borzacchiello, Hyaluronic acid/corn silk extract based
injectable nanocomposite: A biomimetic antibacterial scaffold for bone tissue regeneration, Mater. Sci. Eng. C. 107 (2020)
110195.
[14] F. Shahidi, Antioxidants in food and food antioxidants, Nahrung - Food. 44 (2000) 158–163.
A. Augustyniak, G. Bartosz, A. Čipak, G. Duburs, L. Horáková, W. Łuczaj, M. Majekova, A.D. Odysseos, L. Rackova,
[15] E. Skrzydlewska, M. Stefek, M. Štrosová, G. Tirzitis, P.R. Venskutonis, J. Viskupicova, P.S. Vraka, N. Žarković, Natural
and synthetic antioxidants: An updated overview, Free Radic. Res. 44 (2010) 1216–1262.
[16] F. Arriagada, G. Günther, J. Nos, S. Nonell, C. Olea-Azar, J. Morales, Antioxidant nanomaterial based on core–shell silica nanospheres with surface-bound caffeic acid: A promising vehicle for oxidation-sensitive drugs, Nanomaterials. 9 (2019) 214.
[17] N. Göktürk Baydar, G. Özkan, S. Ya
şar, Evaluation of the antiradical and antioxidant potential of grape extracts, Food
Control. 18 (2007) 1131–1136.
[18] I. Khalil, W.A. Yehye, A.E. Etxeberria, A.A. Alhadi, S.M. Dezfooli, N.B.M. Julkapli, W.J. Basirun, A. Seyfoddin,
Nanoantioxidants: Recent trends in antioxidant delivery applications, Antioxidants. 9 (2020) 24.
[19] L. Valgimigli, A. Baschieri, R. Amorati, Antioxidant activity of nanomaterials, J. Mater. Chem. B. 6 (2018) 2036–2051.
[20] R. Amorati, L. Valgimigli, Advantages and limitations of common testing methods for antioxidants, Free Radic. Res. 49
(2015) 633–649.
[21] K.U. Ingold, D.A. Pratt, Advances in radical-trapping antioxidant chemistry in the 21st century: A kinetics and
mechanisms perspective, Chem. Rev. 114 (2014) 9022–9046.
[22] P. Poprac, K. Jomova, M. Simunkova, V. Kollar, C.J. Rhodes, M. Valko, Targeting Free Radicals in Oxidative StressRelated Human Diseases, Trends Pharmacol. Sci. 38 (2017) 592–607.
[23] A. Somogyi, K. Rosta, P. Pusztai, Z. Tulassay, G. Nagy, Antioxidant measurements, Physiol. Meas. 28 (2007) R41.
[24] G. Cao, R.L. Prior, Comparison of different analytical methods for assessing total antioxidant capacity of human serum, Clin. Chem. 44 (1998) 1309–1315.
[25] M. Ozgen, R.N. Reese, A.Z. Tulio, J.C. Scheerens, A.R. Miller, Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic
acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2
-diphenyl-1- picrylhydrazyl (DPPH) methods, J. Agric. Food Chem. 54 (2006) 1151–1157.
[26] N.J. Miller, C. Rice-Evans, M.J. Davies, V. Gopinathan, A. Milner, A novel method for measuring antioxidant capacity
and its application to monitoring the antioxidant status in premature neonates, Clin. Sci. 84 (1993) 407–412.
[27] M. Valkonen, T. Kuusi, Spectrophotometric assay for total peroxyl radical-trapping antioxidant potential in human serum, J. Lipid Res. 38 (1997) 823–833.
[28] D.D.M. Wayner, G.W. Burton, K.U. Ingold, S. Locke, Quantitative measurement of the total, peroxyl radical-trapping
antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma
proteins, FEBS Lett. 187 (1985) 33–37.
[29] G.W. Winston, F. Regoli, A.J. Dugas, J.H. Fong, K.A. Blanchard, A rapid gas chromatographic assay for determining
oxyradical scavenging capacity of antioxidants and biological fluids, Free Radic. Biol. Med. 24 (1998) 480–493.
[30] V. Hasantabar, M.M. Lakouraj, E.N.Z. And, M. Mohseni, Innovative magnetic tri-layered nanocomposites based on
polyxanthone triazole, polypyrrole and iron oxide: synthesis, characterization and investigation of the biological activities,
RSC Adv. 5 (2015) 70186–70196.
[31] R. Zare, Ehsan Nazarzadeh Lakouraj, Moslem Mansour Moghadam, Peyman Najafi Azimi, Novel
Polyfuran/Functionalized Multiwalled Carbon Nanotubes Composites With Improved Conductivity: Chemical Synthesis,
Characterization, and Antioxidant Activity, Polym. Compos. 34 (2013) 732–739.
[32] U. Nagaich, N. Gulati, S. Chauhan, Antioxidant and Antibacterial Potential of Silver Nanoparticles: Biogenic Synthesis
Utilizing Apple Extract, J. Pharm. 2016 (2016) 1–8.
[33] E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, G. Perale, Progress in Conductive Polyaniline-Based
Nanocomposites for Biomedical Applications: A Review, J. Med. Chem. 63 (2020) 1–22. https://doi.org/10.1021/acs.jmedchem.9b00803.
[34] E. Nazarzadeh Zare, M. Mansour Lakouraj, M. Mohseni, Biodegradable polypyrrole/dextrin conductive nanocomposite: Synthesis, characterization, antioxidant and antibacterial activity, Synth. Met. 187 (2014) 9–16.
[35] V. Hasantabar, M.M. Lakouraj, E.N. Zare, M. Mohseni, Synthesis, Characterization, and Biological Properties of Novel
Bioactive Poly(xanthoneamide-triazole-ethersulfone) and Its Multifunctional Nanocomposite with Polyaniline, Adv.
Polym. Technol. 36 (2017) 309–319.
[36] T. Santhoshkumar, A.A. Rahuman, C. Jayaseelan, G. Rajakumar, S. Marimuthu, A.V. Kirthi, K. Velayutham, J. Thomas,
J. Venkatesan, S.K. Kim, Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its
antibacterial and antioxidant properties, Asian Pac. J. Trop. Med. 7 (2014) 968–976.
[37] H. Huang, Y. Xu, C.J. Tang, J.R. Chen, A.J. Wang, J.J. Feng, Facile and green synthesis of photoluminescent carbon
nanoparticles for cellular imaging, New J. Chem. 38 (2014) 784–789.
[38] A. Barati, M. Shamsipur, E. Arkan, L. Hosseinzadeh, H. Abdollahi, Synthesis of biocompatible and highly
photoluminescent nitrogen doped carbon dots from lime: Analytical applications and optimization using response surface methodology, Mater. Sci. Eng. C. 47 (2015) 325–332.
[39] S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents, Chem. Commun. 48 (2012) 8835–8837.
[40] V.N. Mehta, S. Jha, R.K. Singhal, S.K. Kailasa, Preparation of multicolor emitting carbon dots for HeLa cell imaging,
New J. Chem. 38 (2014) 6152–6160.
[41] A. Mewada, S. Pandey, S. Shinde, N. Mishra, G. Oza, M. Thakur, M. Sharon, M. Sharon, Green synthesis of biocompatible carbon dots using aqueous extract of Trapa bispinosa peel, Mater. Sci. Eng. C. 33 (2013) 2914–2917.
[42] L. Zhu, Y. Yin, C.F. Wang, S. Chen, Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding, J.
Mater. Chem. C. 1 (2013) 4925–4932.
[43] A. Sachdev, P. Gopinath, Green synthesis of multifunctional carbon dots from coriander leaves and their potential
Materials Chemistry Horizons | 2022, 1(1), 35-48 46 application as antioxidants, sensors and bioimaging agents, Analyst. 140 (2015) 4260–4269.
[44] B. Siripireddy, B.K. Mandal, Facile green synthesis of zinc oxide nanoparticles by Eucalyptus globulus and their
photocatalytic and antioxidant activity, Adv. Powder Technol. 28 (2017) 785–797.
[45] P.S. Ramesh, T. Kokila, D. Geetha, Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 142 (2015) 339–343.
[46] S. Salari, S.E. Bahabadi, A. Samzadeh-Kermani, F. Yosefzaei, In-vitro evaluation of antioxidant and antibacterial potential of green synthesized silver nanoparticles using prosopis farcta fruit extract, Iran. J. Pharm. Res. 18 (2019) 430–445.
[47] B. Thomas, A.A. Prasad, S.M. Vithiya, Evaluation of antioxidant, antibacterial and photo catalytic effect of silver
nanoparticles from methanolic extract of coleus vettiveroids - An endemic species, J. Nanostructures. 8 (2018) 179–190.
[48] G. Mahendran, B.D. Ranjitha Kumari, Biological activities of silver nanoparticles from Nothapodytes nimmoniana
(Graham)Mabb. fruit extracts, Food Sci. Hum. Wellness. 5 (2016) 207–218.
[49] G. Das, J.K. Patra, T. Debnath, A. Ansari, H.S. Shin, Investigation of antioxidant, antibacterial, antidiabetic, and
cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.), PLoS One.
14 (2019).
[50] S.M. Helen, M.H.E. Rani, Characterization and Antimicrobial Study of Nickel Nanoparticles Synthesized from Dioscorea
(Elephant Yam) by Green Route, Int. J. Sci. Res. 4 (2015) 216–219.
[51] M. Medhi, Eco-friendly synthesis of Silver Nanoparticles Using Fruit extract of Averrhoa carambola, Int. J. Innov. Sci.
Eng. Technol. 1 (2014) 479–482.
[52] I.R. Bunghez, M.E.B. Patrascu, N. Badea, S.M. Doncea, A. Popescu, R.M. Ion, Antioxidant silver nanoparticles green
synthesized using ornamental plants, J. Optoelectron. Adv. Mater. 14 (2012) 1016–1022.
[53] B. Kumar, K. Smita, L. Cumbal, A. Debut, Lantana camara berry for the synthesis of silver nanoparticles, Asian Pac. J.
Trop. Biomed. 5 (2015) 192–195.
[54] L. Wang, C. Hu, L. Shao, The antimicrobial activity of nanoparticles: Present situation and prospects for the future, Int. J. Nanomedicine. 12 (2017) 1227–1249.
[55] S. Sudhasree, A. Shakila Banu, P. Brindha, G.A. Kurian, Synthesis of nickel nanoparticles by chemical and green route
and their comparison in respect to biological effect and toxicity, Toxicol. Environ. Chem. 96 (2014) 743–754.
[56] P. Makvandi, C. Esposito Corcione, F. Paladini, A.L. Gallo, F. Montagna, R. Jamaledin, M. Pollini, A. Maffezzoli,
Antimicrobial modified hydroxyapatite composite dental bite by stereolithography, Polym. Adv. Technol. 29 (2018) 364–
371.
[57] M. Hassanpour, M.H. Shahavi, G. Heidari, A. Kumar, M. Nodehi, F.D. Moghaddam, M. Mohammadi, N. Nikfarjam, E.
Sharifi, P. Makvandi, H.K. Male, E.N. Zare, Ionic liquid-mediated synthesis of metal nanostructures: Potential application
in cancer diagnosis and therapy, J. Ion. Liq. 2 (2022) 100033. https://doi.org/10.1016/j.jil.2022.100033.
[58] E. Zankari, H. Hasman, S. Cosentino, M. Vestergaard, S. Rasmussen, O. Lund, F.M. Aarestrup, M.V. Larsen,
Identification of acquired antimicrobial resistance genes, J. Antimicrob. Chemother. 67 (2012) 2640–2644.
[59] J. Singh, T. Dutta, K.H. Kim, M. Rawat, P. Samddar, P. Kumar, “Green” synthesis of metals and their oxide nanoparticles:
Applications for environmental remediation, J. Nanobiotechnology. 16 (2018) 84.
[60] S.A. Dahoumane, C. Yéprémian, C. Djédiat, A. Couté, F. Fiévet, T. Coradin, R. Brayner, Improvement of kinetics, yield,
and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga, J. Nanoparticle Res.
18 (2016) 79.
[61] A. Husen, K.S. Siddiqi, Plants and microbes assisted selenium nanoparticles: Characterization and application, J.
Nanobiotechnology. 12 (2014) 28.
[62] M. Khan, A.H. Al-Marri, M. Khan, M.R. Shaik, N. Mohri, S.F. Adil, M. Kuniyil, H.Z. Alkhathlan, A. Al-Warthan, W.
Tremel, M.N. Tahir, M.R.H. Siddiqui, Green approach for the effective reduction of graphene oxide using Salvadora
persica L. root (Miswak) extract, Nanoscale Res. Lett. 10 (2015) 1–9.
[63] G. Krishna, S.S. Kumar, V. Pranitha, M. Alha, S. Charaya, Biogenic synthesis of silver nanoparticles and their synergistic
effect with antibiotics: A study against Salmonella SP, Int. J. Pharm. Pharm. Sci. 7 (2015) 84–88.
[64] R.J. Fair, Y. Tor, Antibiotics and bacterial resistance in the 21st century, Perspect. Medicin. Chem. 6 (2014) 25–64.
[65] M. Arakha, S. Pal, D. Samantarrai, T.K. Panigrahi, B.C. Mallick, K. Pramanik, B. Mallick, S. Jha, Antimicrobial activity
of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface, Sci. Rep. 5 (2015) 14813.
[66] A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Antimicrobial activity of metal oxide nanoparticles
against Gram-positive and Gram-negative bacteria: A comparative study, Int. J. Nanomedicine. 7 (2012) 6003–6009.
[67] S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle?
A study of the gram-negative bacterium Escherichia coli, Appl. Environ. Microbiol. 73 (2007) 1712–1720.
[68] J.T. Seil, T.J. Webster, Antimicrobial applications of nanotechnology: Methods and literature, Int. J. Nanomedicine. 7
(2012) 2767–2781.
[69] H. Agarwal, S. Venkat Kumar, S. Rajeshkumar, A review on green synthesis of zinc oxide nanoparticles – An eco-friendly approach, Resour. Technol. 3 (2017) 406–413.
[70] A. Singh, P.K. Gautam, A. Verma, V. Singh, P.M. Shivapriya, S. Shivalkar, A.K. Sahoo, S.K. Samanta, Corrigendum:
“Green synthesis of metallic nanoparticles as effective alternatives to treat antibiotics resistant bacterial infections: A
review” (Biotechnology Reports (2020) 25, (S2215017X19305934), (10.1016/j.btre.2020.e00427)), Biotechnol. Reports.
29 (2021) e00427.
[71] T. V. Surendra, S.M. Roopan, M.V. Arasu, N.A. Al-Dhabi, G.M. Rayalu, RSM optimized Moringa oleifera peel extract
for green synthesis of M. oleifera capped palladium nanoparticles with antibacterial and hemolytic property, J. Photochem.
Photobiol. B Biol. 162 (2016) 550–557.
[72] T. V. Surendra, S.M. Roopan, Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringa oleifera peel extract, J. Photochem. Photobiol. B Biol. 161 (2016) 122–128.
[73] B. Zare, M.A. Faramarzi, Z. Sepehrizadeh, M. Shakibaie, S. Rezaie, A.R. Shahverdi, Biosynthesis and recovery of rodshaped tellurium nanoparticles and their bactericidal activities, Mater. Res. Bull. 47 (2012) 3719–3725.
[74] X. Dong, W. Liang, M.J. Meziani, Y.P. Sun, L. Yang, Carbon dots as potent antimicrobial agents, Theranostics. 10 (2020)
671–686.
[75] C. yu Wang, P. Makvandi, E.N. Zare, F.R. Tay, L. na Niu, Advances in Antimicrobial Organic and Inorganic
Nanocompounds in Biomedicine, Adv. Ther. 3 (2020) 2000024.
[76] M. Ngu-Schwemlein, S.F. Chin, R. Hileman, C. Drozdowski, C. Upchurch, A. Hargrove, Carbon nanodots as molecular
scaffolds for development of antimicrobial agents, Bioorganic Med. Chem. Lett. 26 (2016) 1745–1749.
[77] M.M. Al Awak, P. Wang, S. Wang, Y. Tang, Y.P. Sun, L. Yang, Correlation of carbon dots’ light-activated antimicrobial
activities and fluorescence quantum yield, RSC Adv. 7 (2017) 30177–30184.
[78] Y. Li, S.G. Harroun, Y. Su, C. Huang, B. Unnikrishnan, H. Lin, C. Lin, C. Huang, Synthesis of Self
Assembled
Spermidine
Carbon Quantum Dots Effective against MultidrugResistant Bacteria, Adv. Healthc. Mater. 5 (2016) 2545–
2554.
[79] H. Li, J. Huang, Y. Song, M. Zhang, H. Wang, F. Lu, H. Huang, Y. Liu, X. Dai, Z. Gu, Z. Yang, R. Zhou, Z. Kang,
Degradable Carbon Dots with Broad-Spectrum Antibacterial Activity, ACS Appl. Mater. Interfaces. 10 (2018) 26936–
26946.
[80] B.I. Ipe, M. Lehnig, C.M. Niemeyer, On the generation of free radical species from quantum dots, Small. 1 (2005) 706–
709.
[81] M.A. Jhonsi, D.A. Ananth, G. Nambirajan, T. Sivasudha, R. Yamini, S. Bera, A. Kathiravan, Antimicrobial activity,
cytotoxicity and DNA binding studies of carbon dots, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 196 (2018)
295–302.
[82] M. Profeta, C. Di Natale, E. Lagreca, V. Mollo, P.A. Netti, R. Vecchione, Cell Membrane-Coated Oil in Water NanoEmulsions as Biomimetic Nanocarriers for Lipophilic Compounds Conveyance, Pharmaceutics. 13 (2021) 1069.
[83] G. Iaccarino, M. Profeta, R. Vecchione, P.A. Netti, Matrix metalloproteinase-cleavable nanocapsules for tumor-activated drug release, Acta Biomater. 89 (2019) 265–278.
[84] R. Vecchione, U. Ciotola, A. Sagliano, P. Bianchini, A. Diaspro, P.A. Netti, Tunable stability of monodisperse secondary
O/W nano-emulsions, Nanoscale. 6 (2014) 9300–9307.
[85] V. Quagliariello, R. Vecchione, A. De Capua, E. Lagreca, R.V. Iaffaioli, G. Botti, P.A. Netti, N. Maurea, Nanoencapsulation of coenzyme Q10 in secondary and tertiary nano-emulsions for enhanced cardioprotection and
hepatoprotection in human cardiomyocytes and hepatocytes during exposure to anthracyclines and trastuzumab, Int. J.
Nanomedicine. 15 (2020) 4859.
[86] D.I. Abu Rabe, M.M. Al Awak, F. Yang, P.A. Okonjo, X. Dong, L.R. Teisl, P. Wang, Y. Tang, N. Pan, Y.P. Sun, L. Yang,
The dominant role of surface functionalization in carbon dots’ photo-activated antibacterial activity, Int. J. Nanomedicine.
14 (2019) 2655–2665