Rapid Adsorption Mechanism of Methylene Blue onto a Porous Mixed Ti-Nb Oxide

Document Type : Original Article

Authors

1 Department of Chemistry and Biochemistry, the University of Texas at El Paso, El Paso, TX 79968-0513, USA

2 Department of Physics, University of Texas at El Paso, El Paso, TX 79968-0513, USA

Abstract

This study explores the incorporation of aqueous methylene blue (MB+) into a specially prepared metal oxide host.  Derived from the chemical exfoliation of KTiNbO5 into nanosheet colloids, the host material was synthesized in water using acid to restack the colloids into aggregates of nanosheets.  The metal oxide host has a large open pore, disordered, and turbostratic layered structure.  When exposed to aqueous solutions of MB+, within minutes the novel host rapidly intercalated MB+ to saturation, to produce an organic-inorganic composite with an MB+ loading of 226 mg/g.  Well-rinsed composites exhibited a deep purple color, indicative of the high internal content of MB+.  The MB+ loading was quantified using EDX and UV-Vis spectrophotometry.  Small-angle x-ray scattering (SAXS) measurements were carried out and analyzed using a unified exponential/power-law (UEP) model to describe the composite’s nanostructure.  SAXS analyses indicated that intercalated material is composed of two phases, each with different layer spacings for the restacked sheets.  Compared to transmission spectra of aqueous MB+, diffuse reflectance UV-Vis absorption spectra of composite revealed changes in the absorbance maxima of the intercalated MB+, indicating that the MB+ molecules were interacting strongly with each other and with the oxide host.  Raman and IR spectra also revealed significant host-guest interactions.  As determined by x-ray diffraction, the measured layer spacing between restacked nanosheets in the composite is consistent with a molecular orientation of MB+ standing on the end but tilted 40.4° away from the plane of the sheets.  Electron microscopy analysis showed that there were no significant morphological changes occurred in the porous host aggregates during the intercalation of MB+.  From an electrostatics evaluation, the new organic-inorganic composite materials were found to contain 40 % of the theoretical maximum of MB+, which resulted in an empirical formula of (MB)0.4H0.6TiNbO5.

Graphical Abstract

Rapid Adsorption Mechanism of Methylene Blue onto a Porous Mixed Ti-Nb Oxide

Keywords


 [1] M.T.Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 209 (2014) 172-184.
[2] P. Bradder, SK. Ling, S. Wang, S. Liu, Dye adsorption on layered graphite oxide, J. Chem. Eng. Data. 56 (2010) 138-141.
[3] J. Bujdák, Effect of the layer charge of clay minerals on optical properties of organic dyes: A review. Appl. Clay Sci. 34 (2006) 58-73.
[4] FJ. Quites, C. Bisio, GV. Rita de Cássia, R. Landers, L. Marchese, HO. Pastore, Vanadium oxide intercalated with
polyelectrolytes: Novel layered hybrids with anion exchange properties, J. Colloid Interface Sci. 368 (2012) 462-469.
[5] M. Laipan, L. Xiang, J. Yu, BR. Martin, R. Zhu, J. Zhu, H. He, A. Clearfield, L. Sun, Layered intercalation compounds:
Mechanisms, new methodologies, and advanced applications, Prog. Mater. Sci. 109 (2020) 100631.
[6] AA. Martí, JL. Colón, Photophysical characterization of the interactions among tris(2,2
-bipyridyl)ruthenium(ii) complexes ionexchanged within zirconium phosphate, Inorg. Chem. 49 (2010) 7298.
[7] R. Uppuluri, AS. Gupta, AS. Rosas, TE. Mallouk, Soft chemistry of ion-exchangeable layered metal oxides, Chem. Soc. Rev. 47 (2018) 2401-2430.
[8] NC. Dafader, T. Akter, ME. Haque, SP. Swapna, S. Islam, D. Huq, Effect of acrylic acid on the properties of
polyvinylpyrrolidone hydrogel prepared by the application of gamma radiation, Afr. J. Biotechnol. 11 (2012) 13049-13057.
[9] M. Wainwright, DA. Phoenix, L. Rice, SM. Burrow, J. Waring, Increased cytotoxicity and phototoxicity in the methylene blue series via chromophore methylation, J. Photochem. Photobiol. B, Biol. 40 (1997) 233-239.
[10] J. Pan, L. Wang, G. Zhang, D. Gong, Intercalation of 2-butyl-4-methylphenol to g–c rich region of DNAand the role of
hydroxypropyl-
β-cyclodextrin, J. Photochem. Photobiol. B, Biol. 151 (2015) 125-134.
[11] NP. Mohabansi, VB. Patil, N. Yenkie, A comparative study on photodegradation of methylene blue dye effluent by advanced oxidation process by using tio2/zno photo catalyst, Rasayan J. Chem. 4 (2011) 814-819.
[12] SO. Kelley, JK. Barton, NM. Jackson, MG. Hill, Electrochemistry of methylene blue bound to a DNA-modified electrode, Bioconjug. Chem. 8 (1997) 31-37.
[13] J. Zhang, Y. Zheng, G. Jiang, C. Yang, M. Oyama, Electrocatalytic evaluation of liquid phase deposited methylene blue/tio2 hybrid films, Electrochem. commun. 10 (2008) 1038-1040.
[14] X. Zhang, D. Li, F. Yin, J. Gong, X. Yang, Z. Tong, X. Xu, Characterization of a layered methylene blue/vanadium oxide
nanocomposite and its application in a reagentless H
2O2 biosensor, Appl. Biochem. Biotechnol. 172 (2014) 176-187.
[15] S. Wang, C. Liu, L. Liu, X. Zhang, J. Gong, Z. Tong, Preparation and electrochemical behavior of methylene blue intercalated into layered triniobate potassium, Inorg. Nano-Met. Chem. 42 (2012) 251-255.
[16] M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 177 (2010) 70-80.
[17] T. Liu, Y. Li, Q. Du, J. Sun, Y. Jiao, G. Yang, Z. Wang, Y. Xia, W. Zhang, K. Wang, Adsorption of methylene blue from
aqueous solution by graphene, Colloids Surf., B. 90 (2012) 197-203.
[18] YC. Sharma, Optimization of parameters for adsorption of methylene blue on a low-cost activated carbon, J. Chem. Eng. Data. 55 (2009) 435-439.
[19] S. Ahmed, Z. Ahmad, A. Kumar, M. Rafiq, VK. Vashistha, MN. Ashiq, A. Kumar, Effective removal of methylene blue using nanoscale manganese oxide rods and spheres derived from different precursors of manganese, J. Phys. Chem. 155 (2021) 110121.
[20] J. Cenens, R. Schoonheydt, Visible spectroscopy of methylene blue on hectorite, laponite b, and barasym in aqueous
suspension, Clays Clay Miner. 36 (1988) 214-224.
[21] MD. Richards, CG. Pope, Adsorption of methylene blue from aqueous solutions by amorphous aluminosilicate gels and zeolitex, J. Chem. Soc., Faraday. 92 (1996) 317-323.
[22] U. Unal, Y. Matsumoto, N. Tamoto, M. Koinuma, M. Machida, K. Izawa, Visible light photoelectrochemical activity of
k4nb6o17 intercalated with photoactive complexes by electrostatic self-assembly deposition, J. Solid State Chem. 179 (2006) 33.
[23] T. Akter, GB. Saupe, Exceptional sensitizer dye loading via a new porous titanium–niobium metal oxide with tris(2,2
-
bipyridyl)ruthenium(ii) in the structure, ACS Appl. Nano Mater. 1(2018) 5620-5630.
[24] S. Masud, M. Zarei, ML. Lopez, Gardea-Torresdey J, Ramana CV, Saupe GB, Photoreduction of metallic co-catalysts onto novel semiconducting metal oxides, Mater Sci Eng, B. 174 (2010) 66.
[25] K. Maeda, TE. Mallouk, Comparison of two-and three-layer restacked dion–jacobson phase niobate nanosheets as catalysts for photochemical hydrogen evolution, J. Mater. Chem. 19 (2009) 4813-4818.
[26] H. Hata, Y. Kobayashi, V. Bojan, WJ. Youngblood, TE. Mallouk, Direct deposition of trivalent rhodium hydroxide
nanoparticles onto a semiconducting layered calcium niobate for photocatalytic hydrogen evolution, Nano Lett. 8 (2008) 794- 799.
[27] U. Unal, Y. Matsumoto, N. Tanaka, Y. Kimura, N. Tamoto, Electrostatic self-assembly deposition of titanate (iv) layered
oxides intercalated with transition metal complexes and their electrochemical properties, J. Phys. Chem. B. 107 (2003) 12680.
[28] GB. Saupe, Y. Zhao, J. Bang, NR. Yesu, GA. Carballo, R. Ordonez, T. Bubphamala, Evaluation of a new porous titaniumniobium mixed oxide for photocatalytic water decontamination, Microchem J. 81 (2005) 156.
[29] R. Ma, T. Sasaki, Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular
assembly, and exploration of functionality, Acc. Chem. Res. 48 (2014) 136-143.
[30] J. Ma, Z. Zhang, M. Yang, Y. Wu, X. Feng, L. Liu, X. Zhang, Z. Tong, Intercalated methylene blue between calcium niobate nanosheets by esd technique for electrocatalytic oxidation of ascorbic acid, Microporous Mesoporous Mater. 221 (2016) 123-127.
[31] H. Rebbah, G. Desgardin, B. Raveau, Les oxydes atimo5: Echangeurs cationiques, Mater. Res. Bull. 14 (1979) 1125.
[32] F. Zhang, J. Ilavsky, GG. Long, JPG. Quintana, AJ. Allen, PR. Jemian, Glassy carbon as an absolute intensity calibration
standard for small-angle scattering, Metall. Mater. Trans. A: Phys. 41 (2010) 1151-1158.
[33] H. Rebbah, G. Desgardin, B. Raveau, Nonstoichiometric oxides with a layer structure: The compounds a1-x(ti1-xm1+x)o5, J. Solid State Chem. 31 (1980) 321-328.
[34] H. Wang, S. Wu, T. Cao, B. Zhao, J. Ruan, J. Cao, Z. Tong, X. Zhang, Self-assembly behavior of layered titanium niobate
and methylene blue cation and electrochemical detection of dopamine, Mater. Res. (2021) 1-10.
[35] GH. Du, Y. Yu, Q. Chen, RH. Wang, W. Zhou, LM. Peng, Exfoliating ktinbo5 particles into nanosheets, Chem. Phys. Lett.
377 (2003) 445-448.
[36] M. Fang, CH. Kim, TE. Mallouk, Dielectric properties of the lamellar niobates and titanoniobates am2nb3o10 and atinbo5 (a= h, k, m = ca, pb), and their condensation products ca4nb6o19 and ti2nb2o9, J. Mater. Chem. 11(1999) 1519-1525.
[37] R. Abe, K. Shinohara, A. Tanaka, M. Hara, JN. Kondo, K. Domen, Preparation of porous niobium oxides by soft-chemical process and their photocatalytic activity, J. Mater. Chem. 9 (1997) 2179.
[38] S. Masud, M. Zarei, ML. Lopez, J. Gardea-Torresdey, CV. Ramana, GB. Saupe, Photoreduction of metallic co-catalysts onto novel semiconducting metal oxides, J. mater. sci. eng., B. 174 (2010) 66-70.
[39] Y. Wang, H. Arandiyan, J. Scott, A. Bagheri, H. Dai, R. Amal, Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: A review, J. Mater. Chem. 5 (2017) 8825-8846.
[40] J. Bujdák, M. Janek, J. Madejová, P. Komadel, Influence of the layer charge density of smectites on the interaction with methylene blue, J. Chem. Soc., Faraday trans. 94 (1998) 3487.
[41] X. Zhang, C. Liu, L. Liu, D. Zhang, T. Zhang, X. Xu, Z. Tong, Intercalation of methylene blue into layered potassium
titanoniobate ktinbo5: Characterization and electrochemical investigation, J. Mater. Sci. 45 (2010) 1604-1609.
[42] T. Heinrich, U. Klett, J. Fricke, Aerogels—nanoporous materials part i: Sol-gel process and drying of gels, J. Porous Mater. 1 (1995) 7-17.
[43] R. Ma, T. Sasaki, Nanosheets of oxides and hydroxides: Ultimate 2d charge
bearing functional crystallites, Adv. Mater. 22 (2010) 5082-5104.
[44] S. Dong, N. Lv, Y. Wu, G. Zhu, X. Dong, Lithium
ion and sodiumion hybrid capacitors: From insertiontype materials design to devices construction, Adv. Funct. Mater. 31 (2021) 2100455.
[45] G. Beaucage, Approximations leading to a unified exponential/power-law approach to small-angle scattering, J. Appl.
Crystallogr. 28 (1995) 717-728.
[46] G. Beaucage, Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension, J. Appl. Crystallogr. 29 (1996) 134-146.
[47] T. Nakato, H. Miyata, K. Kuroda, C. Kato, Synthesis of methylviologen-htinbo5 intercalation compound and its photochemical behavior, J Phys Chem Solids. 6 (1988) 231-238.
[48] J. Li, X. Zhang, B. Pan, J. Xu, L. Liu, J. Ma, M. Yang, Z. Zhang, Z. Tong, Application of a nanostructured composite material constructed by self
assembly of titanoniobate nanosheets and cobalt porphyrin to electrocatalytic reduction of oxygen, Chin. J. Chem. 34 (2016) 1021-1026.
[49] W. Qu, F. Chen, B. Zhao, J. Zhang, Preparation and visible light photocatalytic performance of methylene blue intercalated k4nb6o17, J. Phys. Chem. Solids. 71 (2010) 35-41.
[50] TH. Pham, GW. Brindley, Methylene blue adsorption by clay minerals. Determination of surface areas and cation exchange capacities, Clays Clay Miner. 18 (1970) 203-212.
[51] G. Hähner, A. Marti, ND. Spencer, WR. Caseri, Orientation and electronic structure of methylene blue on mica: A near edge x
ray absorption fine structure spectroscopy study, J. Chem. Phys. 104 (1996) 7749-7757.
[52] J. Ma, J. Wu, J. Zheng, L. Liu, D. Zhang, X. Xu, X. Yang, Z. Tong, Synthesis, characterization and electrochemical behavior of cationic iron porphyrin intercalated into layered niobate, Microporous Mesoporous Mater. 151 (2012) 325.
[53] N-n. Wang, Y-x. Lan, J. He, R. Dong, J-s. Hu, Synthesis and characterization of ktinbo 5 nano-particles by novel polymerizable complex method, Bull. Korean Chem. Soc. 34 (2013) 2737-2740.
[54] J. He, A.Xu, L.Hu, N.Wang, W.Cai, B.Wang, J.Hu, Z.Li, Layered ktinbo5 photocatalyst modified with transitional metal ions (Mn
2+, Ni2+): Investigation of microstructure and photocatalytic reaction pathways for the oxidation of dimethyl sulfide and ethyl mercaptan, Powder Technol. 270 (2015)154-162.
[55] S-H. Byeon, H-J. Nam, Neutron diffraction and ft-raman study of ion-exchangeable layered titanates and niobates, Chem. Mater. 12(6) (2000) 1771-1778.
[56] M. Fang, C.H., Kim, G.B. Saupe, H-N. Kim, C.C. Waraksa, T. Miwa, A. Fujishima, T.E. Mallouk, Layer-by-layer growth and
condensation reactions of niobate and titanoniobate thin films, Chem. Mater. 11(6) (1999)1526-1532.