[1] M.T.Yagub, T.K. Sen, S. Afroze, H.M. Ang, Dye and its removal from aqueous solution by adsorption: A review. Adv. Colloid Interface Sci. 209 (2014) 172-184.
[2] P. Bradder, SK. Ling, S. Wang, S. Liu, Dye adsorption on layered graphite oxide, J. Chem. Eng. Data. 56 (2010) 138-141.
[3] J. Bujdák, Effect of the layer charge of clay minerals on optical properties of organic dyes: A review. Appl. Clay Sci. 34 (2006) 58-73.
[4] FJ. Quites, C. Bisio, GV. Rita de Cássia, R. Landers, L. Marchese, HO. Pastore, Vanadium oxide intercalated with
polyelectrolytes: Novel layered hybrids with anion exchange properties, J. Colloid Interface Sci. 368 (2012) 462-469.
[5] M. Laipan, L. Xiang, J. Yu, BR. Martin, R. Zhu, J. Zhu, H. He, A. Clearfield, L. Sun, Layered intercalation compounds:
Mechanisms, new methodologies, and advanced applications, Prog. Mater. Sci. 109 (2020) 100631.
[6] AA. Martí, JL. Colón, Photophysical characterization of the interactions among tris(2,2′-bipyridyl)ruthenium(ii) complexes ionexchanged within zirconium phosphate, Inorg. Chem. 49 (2010) 7298.
[7] R. Uppuluri, AS. Gupta, AS. Rosas, TE. Mallouk, Soft chemistry of ion-exchangeable layered metal oxides, Chem. Soc. Rev. 47 (2018) 2401-2430.
[8] NC. Dafader, T. Akter, ME. Haque, SP. Swapna, S. Islam, D. Huq, Effect of acrylic acid on the properties of
polyvinylpyrrolidone hydrogel prepared by the application of gamma radiation, Afr. J. Biotechnol. 11 (2012) 13049-13057.
[9] M. Wainwright, DA. Phoenix, L. Rice, SM. Burrow, J. Waring, Increased cytotoxicity and phototoxicity in the methylene blue series via chromophore methylation, J. Photochem. Photobiol. B, Biol. 40 (1997) 233-239.
[10] J. Pan, L. Wang, G. Zhang, D. Gong, Intercalation of 2-butyl-4-methylphenol to g–c rich region of DNAand the role of
hydroxypropyl-β-cyclodextrin, J. Photochem. Photobiol. B, Biol. 151 (2015) 125-134.
[11] NP. Mohabansi, VB. Patil, N. Yenkie, A comparative study on photodegradation of methylene blue dye effluent by advanced oxidation process by using tio2/zno photo catalyst, Rasayan J. Chem. 4 (2011) 814-819.
[12] SO. Kelley, JK. Barton, NM. Jackson, MG. Hill, Electrochemistry of methylene blue bound to a DNA-modified electrode, Bioconjug. Chem. 8 (1997) 31-37.
[13] J. Zhang, Y. Zheng, G. Jiang, C. Yang, M. Oyama, Electrocatalytic evaluation of liquid phase deposited methylene blue/tio2 hybrid films, Electrochem. commun. 10 (2008) 1038-1040.
[14] X. Zhang, D. Li, F. Yin, J. Gong, X. Yang, Z. Tong, X. Xu, Characterization of a layered methylene blue/vanadium oxide
nanocomposite and its application in a reagentless H2O2 biosensor, Appl. Biochem. Biotechnol. 172 (2014) 176-187.
[15] S. Wang, C. Liu, L. Liu, X. Zhang, J. Gong, Z. Tong, Preparation and electrochemical behavior of methylene blue intercalated into layered triniobate potassium, Inorg. Nano-Met. Chem. 42 (2012) 251-255.
[16] M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 177 (2010) 70-80.
[17] T. Liu, Y. Li, Q. Du, J. Sun, Y. Jiao, G. Yang, Z. Wang, Y. Xia, W. Zhang, K. Wang, Adsorption of methylene blue from
aqueous solution by graphene, Colloids Surf., B. 90 (2012) 197-203.
[18] YC. Sharma, Optimization of parameters for adsorption of methylene blue on a low-cost activated carbon, J. Chem. Eng. Data. 55 (2009) 435-439.
[19] S. Ahmed, Z. Ahmad, A. Kumar, M. Rafiq, VK. Vashistha, MN. Ashiq, A. Kumar, Effective removal of methylene blue using nanoscale manganese oxide rods and spheres derived from different precursors of manganese, J. Phys. Chem. 155 (2021) 110121.
[20] J. Cenens, R. Schoonheydt, Visible spectroscopy of methylene blue on hectorite, laponite b, and barasym in aqueous
suspension, Clays Clay Miner. 36 (1988) 214-224.
[21] MD. Richards, CG. Pope, Adsorption of methylene blue from aqueous solutions by amorphous aluminosilicate gels and zeolitex, J. Chem. Soc., Faraday. 92 (1996) 317-323.
[22] U. Unal, Y. Matsumoto, N. Tamoto, M. Koinuma, M. Machida, K. Izawa, Visible light photoelectrochemical activity of
k4nb6o17 intercalated with photoactive complexes by electrostatic self-assembly deposition, J. Solid State Chem. 179 (2006) 33.
[23] T. Akter, GB. Saupe, Exceptional sensitizer dye loading via a new porous titanium–niobium metal oxide with tris(2,2′-
bipyridyl)ruthenium(ii) in the structure, ACS Appl. Nano Mater. 1(2018) 5620-5630.
[24] S. Masud, M. Zarei, ML. Lopez, Gardea-Torresdey J, Ramana CV, Saupe GB, Photoreduction of metallic co-catalysts onto novel semiconducting metal oxides, Mater Sci Eng, B. 174 (2010) 66.
[25] K. Maeda, TE. Mallouk, Comparison of two-and three-layer restacked dion–jacobson phase niobate nanosheets as catalysts for photochemical hydrogen evolution, J. Mater. Chem. 19 (2009) 4813-4818.
[26] H. Hata, Y. Kobayashi, V. Bojan, WJ. Youngblood, TE. Mallouk, Direct deposition of trivalent rhodium hydroxide
nanoparticles onto a semiconducting layered calcium niobate for photocatalytic hydrogen evolution, Nano Lett. 8 (2008) 794- 799.
[27] U. Unal, Y. Matsumoto, N. Tanaka, Y. Kimura, N. Tamoto, Electrostatic self-assembly deposition of titanate (iv) layered
oxides intercalated with transition metal complexes and their electrochemical properties, J. Phys. Chem. B. 107 (2003) 12680.
[28] GB. Saupe, Y. Zhao, J. Bang, NR. Yesu, GA. Carballo, R. Ordonez, T. Bubphamala, Evaluation of a new porous titaniumniobium mixed oxide for photocatalytic water decontamination, Microchem J. 81 (2005) 156.
[29] R. Ma, T. Sasaki, Two-dimensional oxide and hydroxide nanosheets: Controllable high-quality exfoliation, molecular
assembly, and exploration of functionality, Acc. Chem. Res. 48 (2014) 136-143.
[30] J. Ma, Z. Zhang, M. Yang, Y. Wu, X. Feng, L. Liu, X. Zhang, Z. Tong, Intercalated methylene blue between calcium niobate nanosheets by esd technique for electrocatalytic oxidation of ascorbic acid, Microporous Mesoporous Mater. 221 (2016) 123-127.
[31] H. Rebbah, G. Desgardin, B. Raveau, Les oxydes atimo5: Echangeurs cationiques, Mater. Res. Bull. 14 (1979) 1125.
[32] F. Zhang, J. Ilavsky, GG. Long, JPG. Quintana, AJ. Allen, PR. Jemian, Glassy carbon as an absolute intensity calibration
standard for small-angle scattering, Metall. Mater. Trans. A: Phys. 41 (2010) 1151-1158.
[33] H. Rebbah, G. Desgardin, B. Raveau, Nonstoichiometric oxides with a layer structure: The compounds a1-x(ti1-xm1+x)o5, J. Solid State Chem. 31 (1980) 321-328.
[34] H. Wang, S. Wu, T. Cao, B. Zhao, J. Ruan, J. Cao, Z. Tong, X. Zhang, Self-assembly behavior of layered titanium niobate
and methylene blue cation and electrochemical detection of dopamine, Mater. Res. (2021) 1-10.
[35] GH. Du, Y. Yu, Q. Chen, RH. Wang, W. Zhou, LM. Peng, Exfoliating ktinbo5 particles into nanosheets, Chem. Phys. Lett.
377 (2003) 445-448.
[36] M. Fang, CH. Kim, TE. Mallouk, Dielectric properties of the lamellar niobates and titanoniobates am2nb3o10 and atinbo5 (a= h, k, m = ca, pb), and their condensation products ca4nb6o19 and ti2nb2o9, J. Mater. Chem. 11(1999) 1519-1525.
[37] R. Abe, K. Shinohara, A. Tanaka, M. Hara, JN. Kondo, K. Domen, Preparation of porous niobium oxides by soft-chemical process and their photocatalytic activity, J. Mater. Chem. 9 (1997) 2179.
[38] S. Masud, M. Zarei, ML. Lopez, J. Gardea-Torresdey, CV. Ramana, GB. Saupe, Photoreduction of metallic co-catalysts onto novel semiconducting metal oxides, J. mater. sci. eng., B. 174 (2010) 66-70.
[39] Y. Wang, H. Arandiyan, J. Scott, A. Bagheri, H. Dai, R. Amal, Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: A review, J. Mater. Chem. 5 (2017) 8825-8846.
[40] J. Bujdák, M. Janek, J. Madejová, P. Komadel, Influence of the layer charge density of smectites on the interaction with methylene blue, J. Chem. Soc., Faraday trans. 94 (1998) 3487.
[41] X. Zhang, C. Liu, L. Liu, D. Zhang, T. Zhang, X. Xu, Z. Tong, Intercalation of methylene blue into layered potassium
titanoniobate ktinbo5: Characterization and electrochemical investigation, J. Mater. Sci. 45 (2010) 1604-1609.
[42] T. Heinrich, U. Klett, J. Fricke, Aerogels—nanoporous materials part i: Sol-gel process and drying of gels, J. Porous Mater. 1 (1995) 7-17.
[43] R. Ma, T. Sasaki, Nanosheets of oxides and hydroxides: Ultimate 2d charge‐bearing functional crystallites, Adv. Mater. 22 (2010) 5082-5104.
[44] S. Dong, N. Lv, Y. Wu, G. Zhu, X. Dong, Lithium‐ion and sodium‐ion hybrid capacitors: From insertion‐type materials design to devices construction, Adv. Funct. Mater. 31 (2021) 2100455.
[45] G. Beaucage, Approximations leading to a unified exponential/power-law approach to small-angle scattering, J. Appl.
Crystallogr. 28 (1995) 717-728.
[46] G. Beaucage, Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension, J. Appl. Crystallogr. 29 (1996) 134-146.
[47] T. Nakato, H. Miyata, K. Kuroda, C. Kato, Synthesis of methylviologen-htinbo5 intercalation compound and its photochemical behavior, J Phys Chem Solids. 6 (1988) 231-238.
[48] J. Li, X. Zhang, B. Pan, J. Xu, L. Liu, J. Ma, M. Yang, Z. Zhang, Z. Tong, Application of a nanostructured composite material constructed by self‐assembly of titanoniobate nanosheets and cobalt porphyrin to electrocatalytic reduction of oxygen, Chin. J. Chem. 34 (2016) 1021-1026.
[49] W. Qu, F. Chen, B. Zhao, J. Zhang, Preparation and visible light photocatalytic performance of methylene blue intercalated k4nb6o17, J. Phys. Chem. Solids. 71 (2010) 35-41.
[50] TH. Pham, GW. Brindley, Methylene blue adsorption by clay minerals. Determination of surface areas and cation exchange capacities, Clays Clay Miner. 18 (1970) 203-212.
[51] G. Hähner, A. Marti, ND. Spencer, WR. Caseri, Orientation and electronic structure of methylene blue on mica: A near edge x‐ray absorption fine structure spectroscopy study, J. Chem. Phys. 104 (1996) 7749-7757.
[52] J. Ma, J. Wu, J. Zheng, L. Liu, D. Zhang, X. Xu, X. Yang, Z. Tong, Synthesis, characterization and electrochemical behavior of cationic iron porphyrin intercalated into layered niobate, Microporous Mesoporous Mater. 151 (2012) 325.
[53] N-n. Wang, Y-x. Lan, J. He, R. Dong, J-s. Hu, Synthesis and characterization of ktinbo 5 nano-particles by novel polymerizable complex method, Bull. Korean Chem. Soc. 34 (2013) 2737-2740.
[54] J. He, A.Xu, L.Hu, N.Wang, W.Cai, B.Wang, J.Hu, Z.Li, Layered ktinbo5 photocatalyst modified with transitional metal ions (Mn2+, Ni2+): Investigation of microstructure and photocatalytic reaction pathways for the oxidation of dimethyl sulfide and ethyl mercaptan, Powder Technol. 270 (2015)154-162.
[55] S-H. Byeon, H-J. Nam, Neutron diffraction and ft-raman study of ion-exchangeable layered titanates and niobates, Chem. Mater. 12(6) (2000) 1771-1778.
[56] M. Fang, C.H., Kim, G.B. Saupe, H-N. Kim, C.C. Waraksa, T. Miwa, A. Fujishima, T.E. Mallouk, Layer-by-layer growth and
condensation reactions of niobate and titanoniobate thin films, Chem. Mater. 11(6) (1999)1526-1532.