Application of Microfluidic Platforms in Cancer Therapy

Document Type : Review Article

Authors

Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy

Abstract

Cancer is a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020. The implementation of new technological tools can improve prevention strategies, diagnostics, and treatment systems for this group of diseases. Microfluidic devices like Organs on a Chip are being considered a rising approach in biological cancer studies. They involve volumes down to less than microliters and usually do not require specialized machinery and materials to be produced. Therefore, they are potentially used in clinical settings without restriction. In addition, microfluidic platforms have a high potential for mimicking biological conditions. They are recognized as promising tools in cancer fields like single cell detection, fluid biopsy, drug screening modeling, angiogenesis, and metastasis. This review describes the fabrication methods and application of microfluidic platforms in cancer therapy.

Graphical Abstract

Application of Microfluidic Platforms in Cancer Therapy

Keywords


 [1] M. Piñeros, L. Mery, I. Soerjomataram, F. Bray, E. Steliarova-Foucher, Scaling up the surveillance of childhood cancer: a
global roadmap, JNCI J. Natl. Cancer Inst. 113 (2021) 9–15.
[2] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates
of incidence and mortality worldwide for 36 cancers in 185 countries, CA. Cancer J. Clin. 68 (2018) 394–424.
[3] A. Bigham, V. Rahimkhoei, P. Abasian, M. Delfi, J. Naderi, M. Ghomi, F.D. Moghaddam, T. Waqar, Y.N. Ertas, S. Sharifi,
Advances in tannic acid-incorporated biomaterials: Infection treatment, regenerative medicine, cancer therapy, and
biosensing, Chem. Eng. J. (2021) 134146.
[4] M. Hassanpour, M.H. Shahavi, G. Heidari, A. Kumar, M. Nodehi, F.D. Moghaddam, M. Mohammadi, N. Nikfarjam, E.
Sharifi, P. Makvandi, Ionic liquid-mediated synthesis of metal nanostructures: Potential application in cancer diagnosis and therapy, J. Ion. Liq. (2022) 100033.
[5] S.K. Singh, S. Singh, J.W. Lillard Jr, R. Singh, Drug delivery approaches for breast cancer, Int. J. Nanomedicine. 12 (2017)
6205–6218.
[6] P. Makvandi, M. Chen, R. Sartorius, A. Zarrabi, M. Ashrafizadeh, F.D. Moghaddam, J. Ma, V. Mattoli, F.R. Tay, Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking, Nano Today. 40 (2021) 101279.
[7] S. Akgönüllü, M. Bakhshpour, A.K. Pi
şkin, A. Denizli, Microfluidic Systems for Cancer Diagnosis and Applications, Micromachines. 12 (2021) 1349.
[8] H.-Y. Cho, J.-H. Choi, J. Lim, S.-N. Lee, J.-W. Choi, Microfluidic Chip-Based Cancer Diagnosis and Prediction of Relapse
by Detecting Circulating Tumor Cells and Circulating Cancer Stem Cells, Cancers (Basel). 13 (2021) 1385.
[9] S. Van den Driesche, F. Lucklum, F. Bunge, M.J. Vellekoop, 3D printing solutions for microfluidic chip-to-world connections, Micromachines. 9 (2018) 71.
[10] P.N. Nge, C.I. Rogers, A.T. Woolley, Advances in microfluidic materials, functions, integration, and applications, Chem. Rev. 113 (2013) 2550–2583.
[11] K. Ren, J. Zhou, H. Wu, Materials for microfluidic chip fabrication, Acc. Chem. Res. 46 (2013) 2396–2406.
[12] J. Hwang, Y.H. Cho, M.S. Park, B.H. Kim, Microchannel fabrication on glass materials for microfluidic devices, Int. J. Precis. Eng. Manuf. 20 (2019) 479–495.
[13] L. Mou, X. Jiang, Materials for microfluidic immunoassays: a review, Adv. Healthc. Mater. 6 (2017) 1601403.
[14] A. Alrifaiy, O.A. Lindahl, K. Ramser, Polymer-based microfluidic devices for pharmacy, biology and tissue engineering,
Polymers (Basel). 4 (2012) 1349–1398.
[15] C.M.B. Ho, S.H. Ng, K.H.H. Li, Y.-J. Yoon, 3D printed microfluidics for biological applications, Lab Chip. 15 (2015) 3627–
3637.
[16] E. Piccin, W.K.T. Coltro, J.A.F. da Silva, S.C. Neto, L.H. Mazo, E. Carrilho, Polyurethane from biosource as a new material
for fabrication of microfluidic devices by rapid prototyping, J. Chromatogr. A. 1173 (2007) 151–158.
[17] E. Roy, M. Geissler, J.-C. Galas, T. Veres, Prototyping of microfluidic systems using a commercial thermoplastic elastomer, Microfluid. Nanofluidics. 11 (2011) 235–244.
[18] Y. Liu, D. Ganser, A. Schneider, R. Liu, P. Grodzinski, N. Kroutchinina, Microfabricated polycarbonate CE devices for DNA analysis, Anal. Chem. 73 (2001) 4196–4201.
[19] W.-I. Wu, K.N. Sask, J.L. Brash, P.R. Selvaganapathy, Polyurethane-based microfluidic devices for blood contacting
applications, Lab Chip. 12 (2012) 960–970.
[20] Y. Wang, J. Luo, J. Liu, S. Sun, Y. Xiong, Y. Ma, S. Yan, Y. Yang, H. Yin, X. Cai, Label-free microfluidic paper-based
electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers, Biosens.
Bioelectron. 136 (2019) 84–90.
[21] A.-G. Niculescu, C. Chircov, A.C. Bîrc
ă, A.M. Grumezescu, Fabrication and applications of microfluidic devices: A review, Int. J. Mol. Sci. 22 (2021) 2011.
[22] A.K. Au, N. Bhattacharjee, L.F. Horowitz, T.C. Chang, A. Folch, 3D-printed microfluidic automation, Lab Chip. 15 (2015)
1934–1941.
[23] D. Hanahan, Hallmarks of Cancer: New Dimensions, Cancer Discov. 12 (2022) 31–46.
[24] D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation, Cell. 144 (2011) 646–674.
[25] J. Piñeiro Fernández, K.A. Luddy, C. Harmon, C. O’Farrelly, Hepatic tumor microenvironments and effects on NK cell
phenotype and function, Int. J. Mol. Sci. 20 (2019) 4131.
[26] R.A. Cairns, I.S. Harris, T.W. Mak, Regulation of cancer cell metabolism, Nat. Rev. Cancer. 11 (2011) 85–95.
[27] M. Shang, R.H. Soon, C.T. Lim, B.L. Khoo, J. Han, Microfluidic modelling of the tumor microenvironment for anti-cancer drug development, Lab Chip. 19 (2019) 369–386.
[28] M.-D. Wang, H. Wu, S. Huang, H.-L. Zhang, C.-J. Qin, L.-H. Zhao, G.-B. Fu, X. Zhou, X.-M. Wang, L. Tang, HBx regulates
fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress, Oncotarget. 7 (2016) 6711.
[29] L.K. Boroughs, R.J. DeBerardinis, Metabolic pathways promoting cancer cell survival and growth, Nat. Cell Biol. 17 (2015) 351–359.
[30] T. Cheng, J. Sudderth, C. Yang, A.R. Mullen, E.S. Jin, J.M. Matés, R.J. DeBerardinis, Pyruvate carboxylase is required for
glutamine-independent growth of tumor cells, Proc. Natl. Acad. Sci. 108 (2011) 8674–8679.
[31] J.E. Klaunig, Oxidative stress and cancer, Curr. Pharm. Des. 24 (2018) 4771–4778.
[32] M.-D. Wang, N.-Y. Wang, H.-L. Zhang, L.-Y. Sun, Q.-R. Xu, L. Liang, C. Li, D.-S. Huang, H. Zhu, T. Yang, Fatty acid
transport protein-5 (FATP5) deficiency enhances hepatocellular carcinoma progression and metastasis by reprogramming
cellular energy metabolism and regulating the AMPK-mTOR signaling pathway, Oncogenesis. 10 (2021) 1–11.
[33] J. Cao, H. Choi, D. Kranseler, A. Pantel, D. Mankoff, R. Zhou, Dynamic PET Imaging Marker of Glutaminase Inhibition in
Triple Negative Breast Cancer, J. Nucl. Med. 60 (2019) 135.
[34] Y. Kato, S. Ozawa, C. Miyamoto, Y. Maehata, A. Suzuki, T. Maeda, Y. Baba, Acidic extracellular microenvironment and
cancer, Cancer Cell Int. 13 (2013) 1–8.
[35] S. Sutoo, T. Maeda, A. Suzuki, Y. Kato, Adaptation to chronic acidic extracellular pH elicits a sustained increase in lung
cancer cell invasion and metastasis, Clin. Exp. Metastasis. 37 (2020) 133–144.
[36] F. Röhrig, A. Schulze, The multifaceted roles of fatty acid synthesis in cancer, Nat. Rev. Cancer. 16 (2016) 732–749.
[37] F.R. Balkwill, M. Capasso, T. Hagemann, The tumor microenvironment at a glance, J. Cell Sci. 125 (2012) 5591–5596.
[38] F.D. Moghaddam, I. Akbarzadeh, E. Marzbankia, M. Farid, A.H. Reihani, M. Javidfar, P. Mortazavi, Delivery of melittinloaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect, Cancer Nanotechnol. 12 (2021) 1–35.
[39] A. Moammeri, K. Abbaspour, A. Zafarian, E. Jamshidifar, H. Motasadizadeh, F. Dabbagh Moghaddam, Z. Salehi, P.
Makvandi, R. Dinarvand, pH-Responsive, Adorned Nanoniosomes for Codelivery of Cisplatin and Epirubicin: Synergistic
Treatment of Breast Cancer, ACS Appl. Bio Mater. 5 (2022) 675–690.
[40] X. Guan, Cancer metastases: challenges and opportunities, Acta Pharm. Sin. B. 5 (2015) 402–418.
[41] A. Sontheimer-Phelps, B.A. Hassell, D.E. Ingber, Modelling cancer in microfluidic human organs-on-chips, Nat. Rev. Cancer. 19 (2019) 65–81.
[42] J.P. Thiery, H. Acloque, R.Y.J. Huang, M.A. Nieto, Epithelial-mesenchymal transitions in development and disease, Cell. 139 (2009) 871–890.
[43] T.G. Manning, J.S. O’Brien, D. Christidis, M. Perera, J. Coles-Black, J. Chuen, D.M. Bolton, N. Lawrentschuk, Three
dimensional models in uro-oncology: a future built with additive fabrication, World J. Urol. 36 (2018) 557–563.
[44] B.-W. Huang, J.-Q. Gao, Application of 3D cultured multicellular spheroid tumor models in tumor-targeted drug delivery system research, J. Control. Release. 270 (2018) 246–259.
[45] E. Fennema, N. Rivron, J. Rouwkema, C. van Blitterswijk, J. De Boer, Spheroid culture as a tool for creating 3D complex
tissues, Trends Biotechnol. 31 (2013) 108–115.
[46] M.J. Ware, K. Colbert, V. Keshishian, J. Ho, S.J. Corr, S.A. Curley, B. Godin, Generation of homogenous three-dimensional pancreatic cancer cell spheroids using an improved hanging drop technique, Tissue Eng. Part C Methods. 22 (2016) 312–321.
[47] S. Breslin, L. O’Driscoll, Three-dimensional cell culture: the missing link in drug discovery, Drug Discov. Today. 18 (2013) 240–249.
[48] G.Y. Lee, P.A. Kenny, E.H. Lee, M.J. Bissell, Three-dimensional culture models of normal and malignant breast epithelial cells, Nat. Methods. 4 (2007) 359–365.
[49] A.U.R. Aziz, C. Geng, M. Fu, X. Yu, K. Qin, B. Liu, The role of microfluidics for organ on chip simulations, Bioengineering. 4 (2017) 39.
[50] S. Gehmert, S. Gehmert, X. Bai, S. Klein, O. Ortmann, L. Prantl, Limitation of in vivo models investigating angiogenesis in breast cancer, Clin. Hemorheol. Microcirc. 49 (2011) 519–526.
[51] J.T. Borenstein, Microfluidic techniques for cancer therapies, Eur. Pharm. Rev. 22 (2017) 50–53.
[52] F.D. Moghaddam, S. Hamedi, M. Dezfulian, Anti-tumor effect of C-phycocyanin from Anabaena sp. ISC55 in inbred BALB/c mice injected with 4T1 breast cancer cell, Comp. Clin. Path. 25 (2016) 947–952.
[53] A.E. Urai, B. Doiron, A.M. Leifer, A.K. Churchland, Large-scale neural recordings call for new insights to link brain and
behavior, Nat. Neurosci. (2022) 1–9.
[54] R. Aryal, A. Patabendige, Blood–brain barrier disruption in atrial fibrillation: a potential contributor to the increased risk of dementia and worsening of stroke outcomes?, Open Biol. 11 (2021) 200396.
[55] H. Xu, Z. Li, Y. Yu, S. Sizdahkhani, W.S. Ho, F. Yin, L. Wang, G. Zhu, M. Zhang, L. Jiang, A dynamic in vivo-like
organotypic blood-brain barrier model to probe metastatic brain tumors, Sci. Rep. 6 (2016) 1–12.
[56] C.R. Oliver, M.A. Altemus, T.M. Westerhof, H. Cheriyan, X. Cheng, M. Dziubinski, Z. Wu, J. Yates, A. Morikawa, J. Heth,
A platform for artificial intelligence based identification of the extravasation potential of cancer cells into the brain metastatic niche, Lab Chip. 19 (2019) 1162–1173.
[57] L. Kaplan, B.W. Chow, C. Gu, Neuronal regulation of the blood–brain barrier and neurovascular coupling, Nat. Rev. Neurosci. 21 (2020) 416–432.
[58] B. Miccoli, D. Braeken, Y.-C.E. Li, Brain-on-a-chip devices for drug screening and disease modeling applications, Curr.
Pharm. Des. 24 (2018) 5419–5436.
[59] L.M. Griep, F. Wolbers, B. de Wagenaar, P.M. ter Braak, B.B. Weksler, I.A. Romero, P.O. Couraud, I. Vermes, A.D. van der
Meer, A. van den Berg, BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function, Biomed. Microdevices. 15 (2013) 145–150.
[60] J.A. Brown, V. Pensabene, D.A. Markov, V. Allwardt, M.D. Neely, M. Shi, C.M. Britt, O.S. Hoilett, Q. Yang, B.M. Brewer,
Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor, Biomicrofluidics. 9 (2015) 54124.
[61] J. Li, P. Cai, A. Shalviri, J.T. Henderson, C. He, W.D. Foltz, P. Prasad, P.M. Brodersen, Y. Chen, R. DaCosta, A
multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood–brain barrier targeting brain metastases of breast cancer, ACS Nano. 8 (2014) 9925–9940.
[62] N. Kashaninejad, M.R. Nikmaneshi, H. Moghadas, A. Kiyoumarsi Oskouei, M. Rismanian, M. Barisam, M.S. Saidi, B.
Firoozabadi, Organ-tumor-on-a-chip for chemosensitivity assay: A critical review, Micromachines. 7 (2016) 130.
[63] W. Liu, P. Sun, L. Yang, J. Wang, L. Li, J. Wang, Assay of glioma cell responses to an anticancer drug in a cell-based
microfluidic device, Microfluid. Nanofluidics. 9 (2010) 717–725.
[64] T.C. Chang, A.M. Mikheev, W. Huynh, R.J. Monnat, R.C. Rostomily, A. Folch, Parallel microfluidic chemosensitivity testing on individual slice cultures, Lab Chip. 14 (2014) 4540–4551.
[65] M.A. Winkelman, D.Y. Kim, S. Kakarla, A. Grath, N. Silvia, G. Dai, Interstitial flow enhances the formation, connectivity,
and function of 3D brain microvascular networks generated within a microfluidic device, Lab Chip. 22 (2022) 170–192.
[66] J. Sun, M.D. Masterman-Smith, N.A. Graham, J. Jiao, J. Mottahedeh, D.R. Laks, M. Ohashi, J. DeJesus, K. Kamei, K.-B. Lee, A microfluidic platform for systems pathology: multiparameter single-cell signaling measurements of clinical brain tumor specimens, Cancer Res. 70 (2010) 6128–6138.
[67] E. Samiei, A. Seyfoori, B. Toyota, S. Ghavami, M. Akbari, Investigating programmed cell death and tumor invasion in a
three-dimensional (3D) microfluidic model of glioblastoma, Int. J. Mol. Sci. 21 (2020) 3162.
[68] X. Liu, J. Fang, S. Huang, X. Wu, X. Xie, J. Wang, F. Liu, M. Zhang, Z. Peng, N. Hu, Tumor-on-a-chip: From bioinspired
design to biomedical application, Microsystems Nanoeng. 7 (2021) 1–23.
[69] Â. Carvalho, G. Ferreira, D. Seixas, C. Guimarães-Teixeira, R. Henrique, F.J. Monteiro, C. Jerónimo, Emerging lab-on-a-chip approaches for liquid biopsy in lung cancer: status in CTCs and ctDNA research and clinical validation, Cancers (Basel). 13
(2021) 2101.
[70] J. Ko, M.M. Winslow, J. Sage, Mechanisms of small cell lung cancer metastasis, EMBO Mol. Med. 13 (2021) e13122.
[71] M.A.U. Khalid, Y.S. Kim, M. Ali, B.G. Lee, Y.-J. Cho, K.H. Choi, A lung cancer-on-chip platform with integrated biosensors for physiological monitoring and toxicity assessment, Biochem. Eng. J. 155 (2020) 107469.
[72] K. Song, X. Zu, Z. Du, Z. Hu, J. Wang, J. Li, Diversity Models and Applications of 3D Breast Tumor-on-a-Chip,
Micromachines. 12 (2021) 814.
[73] A.D. Dey, A. Bigham, Y. Esmaeili, M. Ashrafizadeh, F.D. Moghaddam, S.C. Tan, S. Yousefiasl, S. Sharma, A. Maleki, N.
Rabiee, Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy, in: Semin. Cancer Biol., Elsevier, 2022.
[74] F.D. Moghaddam, P. Mortazavi, S. Hamedi, M. Nabiuni, N.H. Roodbari, Apoptotic effects of melittin on 4T1 breast cancer cell line is associated with up regulation of Mfn1 and Drp1 mRNA expression, Anti-Cancer Agents Med. Chem. (Formerly Curr. Med. Chem. Agents). 20 (2020) 790–799.
[75] M. Huerta
Reyes, A. AguilarRojas, Threedimensional models to study breast cancer, Int. J. Oncol. (2021).
[76] L. Zhao, M. Shi, Y. Liu, X. Zheng, J. Xiu, Y. Liu, L. Tian, H. Wang, M. Zhang, X. Zhang, Systematic analysis of different
cell spheroids with a microfluidic device using scanning electrochemical microscopy and gene expression profiling, Anal.
Chem. 91 (2019) 4307–4311.
[77] T. Yuan, D. Gao, S. Li, Y. Jiang, Co-culture of tumor spheroids and monocytes in a collagen matrix-embedded microfluidic device to study the migration of breast cancer cells, Chinese Chem. Lett. 30 (2019) 331–336.
[78] Y. Chen, D. Gao, H. Liu, S. Lin, Y. Jiang, Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening, Anal. Chim. Acta. 898 (2015) 85–92.
[79] S. Chandrasekaran, Y. Geng, L.A. DeLouise, M.R. King, Effect of homotypic and heterotypic interaction in 3D on the Eselectin mediated adhesive properties of breast cancer cell lines, Biomaterials. 33 (2012) 9037–9048.
[80] M.M.G. Grafton, L. Wang, P.-A. Vidi, J. Leary, S.A. Lelièvre, Breast on-a-chip: mimicry of the channeling system of the
breast for development of theranostics, Integr. Biol. 3 (2011) 451–459.
[81] A.D. Wong, P.C. Searson, Live-cell imaging of invasion and intravasation in an artificial microvessel platform, Cancer Res. 74 (2014) 4937–4945.
[82] P.G. Miller, C. Chen, Y.I. Wang, E. Gao, M.L. Shuler, Multiorgan microfluidic platform with breathable lung chamber for
inhalation or intravenous drug screening and development, Biotechnol. Bioeng. 117 (2020) 486–497.
[83] S.M. Grist, S.S. Nasseri, L. Laplatine, J.C. Schmok, D. Yao, J. Hua, L. Chrostowski, K.C. Cheung, Long-term monitoring in
a microfluidic system to study tumour spheroid response to chronic and cycling hypoxia, Sci. Rep. 9 (2019) 1–13.
[84] W. Seo, W.-I. Jeong, Hepatic non-parenchymal cells: Master regulators of alcoholic liver disease?, World J. Gastroenterol. 22 (2016) 1348.
[85] J. Kim, C. Lee, I. Kim, J. Ro, J. Kim, Y. Min, J. Park, V. Sunkara, Y.-S. Park, I. Michael, Three-dimensional human liverchip emulating premetastatic niche formation by breast cancer-derived extracellular vesicles, ACS Nano. 14 (2020) 14971–
14988.
[86] D. Bovard, A. Sandoz, K. Luettich, S. Frentzel, A. Iskandar, D. Marescotti, K. Trivedi, E. Guedj, Q. Dutertre, M.C. Peitsch,
A lung/liver-on-a-chip platform for acute and chronic toxicity studies, Lab Chip. 18 (2018) 3814–3829.
[87] J. Bahnemann, A. Enders, S. Winkler, Microfluidic systems and organ (human) on a chip, in: Basic Concepts 3D Cell Cult., Springer, 2021: pp. 175–200.
[88] K.-J. Jang, K.-Y. Suh, A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells, Lab Chip. 10 (2010) 36–42.
[89] K.-J. Jang, A.P. Mehr, G.A. Hamilton, L.A. McPartlin, S. Chung, K.-Y. Suh, D.E. Ingber, Human kidney proximal tubuleon-a-chip for drug transport and nephrotoxicity assessment, Integr. Biol. 5 (2013) 1119–1129.
[90] Y.-H. Lin, Y.-J. Chen, C.-S. Lai, Y.-T. Chen, C.-L. Chen, J.-S. Yu, Y.-S. Chang, A negative-pressure-driven microfluidic chip
for the rapid detection of a bladder cancer biomarker in urine using bead-based enzyme-linked immunosorbent assay,
Biomicrofluidics. 7 (2013) 24103.
[91] P. Liu, Y. Cao, S. Zhang, Y. Zhao, X. Liu, H. Shi, K. Hu, G. Zhu, B. Ma, H. Niu, A bladder cancer microenvironment
simulation system based on a microfluidic co-culture model, Oncotarget. 6 (2015) 37695.
[92] J. Ahn, J. Lim, N. Jusoh, J. Lee, T.-E. Park, Y. Kim, J. Kim, N.L. Jeon, 3D microfluidic bone tumor microenvironment
comprised of hydroxyapatite/fibrin composite, Front. Bioeng. Biotechnol. (2019) 168.
[93] A. Mansoorifar, R. Gordon, R.C. Bergan, L.E. Bertassoni, Bone
onaChip: Microfluidic Technologies and Microphysiologic Models of Bone Tissue, Adv. Funct. Mater. 31 (2021) 2006796.
[94] C. Zhao, Z. Ge, C. Yang, Microfluidic techniques for analytes concentration, Micromachines. 8 (2017) 28.
[95] L. Vaccari, G. Birarda, G. Grenci, S. Pacor, L. Businaro, Synchrotron radiation infrared microspectroscopy of single living
cells in microfluidic devices: advantages, disadvantages and future perspectives, in: J. Phys. Conf. Ser., IOP Publishing, 2012: p. 12007.