[1] M. Piñeros, L. Mery, I. Soerjomataram, F. Bray, E. Steliarova-Foucher, Scaling up the surveillance of childhood cancer: a
global roadmap, JNCI J. Natl. Cancer Inst. 113 (2021) 9–15.
[2] F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates
of incidence and mortality worldwide for 36 cancers in 185 countries, CA. Cancer J. Clin. 68 (2018) 394–424.
[3] A. Bigham, V. Rahimkhoei, P. Abasian, M. Delfi, J. Naderi, M. Ghomi, F.D. Moghaddam, T. Waqar, Y.N. Ertas, S. Sharifi,
Advances in tannic acid-incorporated biomaterials: Infection treatment, regenerative medicine, cancer therapy, and
biosensing, Chem. Eng. J. (2021) 134146.
[4] M. Hassanpour, M.H. Shahavi, G. Heidari, A. Kumar, M. Nodehi, F.D. Moghaddam, M. Mohammadi, N. Nikfarjam, E.
Sharifi, P. Makvandi, Ionic liquid-mediated synthesis of metal nanostructures: Potential application in cancer diagnosis and therapy, J. Ion. Liq. (2022) 100033.
[5] S.K. Singh, S. Singh, J.W. Lillard Jr, R. Singh, Drug delivery approaches for breast cancer, Int. J. Nanomedicine. 12 (2017)
6205–6218.
[6] P. Makvandi, M. Chen, R. Sartorius, A. Zarrabi, M. Ashrafizadeh, F.D. Moghaddam, J. Ma, V. Mattoli, F.R. Tay, Endocytosis of abiotic nanomaterials and nanobiovectors: Inhibition of membrane trafficking, Nano Today. 40 (2021) 101279.
[7] S. Akgönüllü, M. Bakhshpour, A.K. Pişkin, A. Denizli, Microfluidic Systems for Cancer Diagnosis and Applications, Micromachines. 12 (2021) 1349.
[8] H.-Y. Cho, J.-H. Choi, J. Lim, S.-N. Lee, J.-W. Choi, Microfluidic Chip-Based Cancer Diagnosis and Prediction of Relapse
by Detecting Circulating Tumor Cells and Circulating Cancer Stem Cells, Cancers (Basel). 13 (2021) 1385.
[9] S. Van den Driesche, F. Lucklum, F. Bunge, M.J. Vellekoop, 3D printing solutions for microfluidic chip-to-world connections, Micromachines. 9 (2018) 71.
[10] P.N. Nge, C.I. Rogers, A.T. Woolley, Advances in microfluidic materials, functions, integration, and applications, Chem. Rev. 113 (2013) 2550–2583.
[11] K. Ren, J. Zhou, H. Wu, Materials for microfluidic chip fabrication, Acc. Chem. Res. 46 (2013) 2396–2406.
[12] J. Hwang, Y.H. Cho, M.S. Park, B.H. Kim, Microchannel fabrication on glass materials for microfluidic devices, Int. J. Precis. Eng. Manuf. 20 (2019) 479–495.
[13] L. Mou, X. Jiang, Materials for microfluidic immunoassays: a review, Adv. Healthc. Mater. 6 (2017) 1601403.
[14] A. Alrifaiy, O.A. Lindahl, K. Ramser, Polymer-based microfluidic devices for pharmacy, biology and tissue engineering,
Polymers (Basel). 4 (2012) 1349–1398.
[15] C.M.B. Ho, S.H. Ng, K.H.H. Li, Y.-J. Yoon, 3D printed microfluidics for biological applications, Lab Chip. 15 (2015) 3627–
3637.
[16] E. Piccin, W.K.T. Coltro, J.A.F. da Silva, S.C. Neto, L.H. Mazo, E. Carrilho, Polyurethane from biosource as a new material
for fabrication of microfluidic devices by rapid prototyping, J. Chromatogr. A. 1173 (2007) 151–158.
[17] E. Roy, M. Geissler, J.-C. Galas, T. Veres, Prototyping of microfluidic systems using a commercial thermoplastic elastomer, Microfluid. Nanofluidics. 11 (2011) 235–244.
[18] Y. Liu, D. Ganser, A. Schneider, R. Liu, P. Grodzinski, N. Kroutchinina, Microfabricated polycarbonate CE devices for DNA analysis, Anal. Chem. 73 (2001) 4196–4201.
[19] W.-I. Wu, K.N. Sask, J.L. Brash, P.R. Selvaganapathy, Polyurethane-based microfluidic devices for blood contacting
applications, Lab Chip. 12 (2012) 960–970.
[20] Y. Wang, J. Luo, J. Liu, S. Sun, Y. Xiong, Y. Ma, S. Yan, Y. Yang, H. Yin, X. Cai, Label-free microfluidic paper-based
electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers, Biosens.
Bioelectron. 136 (2019) 84–90.
[21] A.-G. Niculescu, C. Chircov, A.C. Bîrcă, A.M. Grumezescu, Fabrication and applications of microfluidic devices: A review, Int. J. Mol. Sci. 22 (2021) 2011.
[22] A.K. Au, N. Bhattacharjee, L.F. Horowitz, T.C. Chang, A. Folch, 3D-printed microfluidic automation, Lab Chip. 15 (2015)
1934–1941.
[23] D. Hanahan, Hallmarks of Cancer: New Dimensions, Cancer Discov. 12 (2022) 31–46.
[24] D. Hanahan, R.A. Weinberg, Hallmarks of cancer: the next generation, Cell. 144 (2011) 646–674.
[25] J. Piñeiro Fernández, K.A. Luddy, C. Harmon, C. O’Farrelly, Hepatic tumor microenvironments and effects on NK cell
phenotype and function, Int. J. Mol. Sci. 20 (2019) 4131.
[26] R.A. Cairns, I.S. Harris, T.W. Mak, Regulation of cancer cell metabolism, Nat. Rev. Cancer. 11 (2011) 85–95.
[27] M. Shang, R.H. Soon, C.T. Lim, B.L. Khoo, J. Han, Microfluidic modelling of the tumor microenvironment for anti-cancer drug development, Lab Chip. 19 (2019) 369–386.
[28] M.-D. Wang, H. Wu, S. Huang, H.-L. Zhang, C.-J. Qin, L.-H. Zhao, G.-B. Fu, X. Zhou, X.-M. Wang, L. Tang, HBx regulates
fatty acid oxidation to promote hepatocellular carcinoma survival during metabolic stress, Oncotarget. 7 (2016) 6711.
[29] L.K. Boroughs, R.J. DeBerardinis, Metabolic pathways promoting cancer cell survival and growth, Nat. Cell Biol. 17 (2015) 351–359.
[30] T. Cheng, J. Sudderth, C. Yang, A.R. Mullen, E.S. Jin, J.M. Matés, R.J. DeBerardinis, Pyruvate carboxylase is required for
glutamine-independent growth of tumor cells, Proc. Natl. Acad. Sci. 108 (2011) 8674–8679.
[31] J.E. Klaunig, Oxidative stress and cancer, Curr. Pharm. Des. 24 (2018) 4771–4778.
[32] M.-D. Wang, N.-Y. Wang, H.-L. Zhang, L.-Y. Sun, Q.-R. Xu, L. Liang, C. Li, D.-S. Huang, H. Zhu, T. Yang, Fatty acid
transport protein-5 (FATP5) deficiency enhances hepatocellular carcinoma progression and metastasis by reprogramming
cellular energy metabolism and regulating the AMPK-mTOR signaling pathway, Oncogenesis. 10 (2021) 1–11.
[33] J. Cao, H. Choi, D. Kranseler, A. Pantel, D. Mankoff, R. Zhou, Dynamic PET Imaging Marker of Glutaminase Inhibition in
Triple Negative Breast Cancer, J. Nucl. Med. 60 (2019) 135.
[34] Y. Kato, S. Ozawa, C. Miyamoto, Y. Maehata, A. Suzuki, T. Maeda, Y. Baba, Acidic extracellular microenvironment and
cancer, Cancer Cell Int. 13 (2013) 1–8.
[35] S. Sutoo, T. Maeda, A. Suzuki, Y. Kato, Adaptation to chronic acidic extracellular pH elicits a sustained increase in lung
cancer cell invasion and metastasis, Clin. Exp. Metastasis. 37 (2020) 133–144.
[36] F. Röhrig, A. Schulze, The multifaceted roles of fatty acid synthesis in cancer, Nat. Rev. Cancer. 16 (2016) 732–749.
[37] F.R. Balkwill, M. Capasso, T. Hagemann, The tumor microenvironment at a glance, J. Cell Sci. 125 (2012) 5591–5596.
[38] F.D. Moghaddam, I. Akbarzadeh, E. Marzbankia, M. Farid, A.H. Reihani, M. Javidfar, P. Mortazavi, Delivery of melittinloaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect, Cancer Nanotechnol. 12 (2021) 1–35.
[39] A. Moammeri, K. Abbaspour, A. Zafarian, E. Jamshidifar, H. Motasadizadeh, F. Dabbagh Moghaddam, Z. Salehi, P.
Makvandi, R. Dinarvand, pH-Responsive, Adorned Nanoniosomes for Codelivery of Cisplatin and Epirubicin: Synergistic
Treatment of Breast Cancer, ACS Appl. Bio Mater. 5 (2022) 675–690.
[40] X. Guan, Cancer metastases: challenges and opportunities, Acta Pharm. Sin. B. 5 (2015) 402–418.[41] A. Sontheimer-Phelps, B.A. Hassell, D.E. Ingber, Modelling cancer in microfluidic human organs-on-chips, Nat. Rev. Cancer. 19 (2019) 65–81.
[42] J.P. Thiery, H. Acloque, R.Y.J. Huang, M.A. Nieto, Epithelial-mesenchymal transitions in development and disease, Cell. 139 (2009) 871–890.
[43] T.G. Manning, J.S. O’Brien, D. Christidis, M. Perera, J. Coles-Black, J. Chuen, D.M. Bolton, N. Lawrentschuk, Three
dimensional models in uro-oncology: a future built with additive fabrication, World J. Urol. 36 (2018) 557–563.
[44] B.-W. Huang, J.-Q. Gao, Application of 3D cultured multicellular spheroid tumor models in tumor-targeted drug delivery system research, J. Control. Release. 270 (2018) 246–259.
[45] E. Fennema, N. Rivron, J. Rouwkema, C. van Blitterswijk, J. De Boer, Spheroid culture as a tool for creating 3D complex
tissues, Trends Biotechnol. 31 (2013) 108–115.
[46] M.J. Ware, K. Colbert, V. Keshishian, J. Ho, S.J. Corr, S.A. Curley, B. Godin, Generation of homogenous three-dimensional pancreatic cancer cell spheroids using an improved hanging drop technique, Tissue Eng. Part C Methods. 22 (2016) 312–321.
[47] S. Breslin, L. O’Driscoll, Three-dimensional cell culture: the missing link in drug discovery, Drug Discov. Today. 18 (2013) 240–249.
[48] G.Y. Lee, P.A. Kenny, E.H. Lee, M.J. Bissell, Three-dimensional culture models of normal and malignant breast epithelial cells, Nat. Methods. 4 (2007) 359–365.
[49] A.U.R. Aziz, C. Geng, M. Fu, X. Yu, K. Qin, B. Liu, The role of microfluidics for organ on chip simulations, Bioengineering. 4 (2017) 39.
[50] S. Gehmert, S. Gehmert, X. Bai, S. Klein, O. Ortmann, L. Prantl, Limitation of in vivo models investigating angiogenesis in breast cancer, Clin. Hemorheol. Microcirc. 49 (2011) 519–526.
[51] J.T. Borenstein, Microfluidic techniques for cancer therapies, Eur. Pharm. Rev. 22 (2017) 50–53.
[52] F.D. Moghaddam, S. Hamedi, M. Dezfulian, Anti-tumor effect of C-phycocyanin from Anabaena sp. ISC55 in inbred BALB/c mice injected with 4T1 breast cancer cell, Comp. Clin. Path. 25 (2016) 947–952.
[53] A.E. Urai, B. Doiron, A.M. Leifer, A.K. Churchland, Large-scale neural recordings call for new insights to link brain and
behavior, Nat. Neurosci. (2022) 1–9.
[54] R. Aryal, A. Patabendige, Blood–brain barrier disruption in atrial fibrillation: a potential contributor to the increased risk of dementia and worsening of stroke outcomes?, Open Biol. 11 (2021) 200396.
[55] H. Xu, Z. Li, Y. Yu, S. Sizdahkhani, W.S. Ho, F. Yin, L. Wang, G. Zhu, M. Zhang, L. Jiang, A dynamic in vivo-like
organotypic blood-brain barrier model to probe metastatic brain tumors, Sci. Rep. 6 (2016) 1–12.
[56] C.R. Oliver, M.A. Altemus, T.M. Westerhof, H. Cheriyan, X. Cheng, M. Dziubinski, Z. Wu, J. Yates, A. Morikawa, J. Heth,
A platform for artificial intelligence based identification of the extravasation potential of cancer cells into the brain metastatic niche, Lab Chip. 19 (2019) 1162–1173.
[57] L. Kaplan, B.W. Chow, C. Gu, Neuronal regulation of the blood–brain barrier and neurovascular coupling, Nat. Rev. Neurosci. 21 (2020) 416–432.
[58] B. Miccoli, D. Braeken, Y.-C.E. Li, Brain-on-a-chip devices for drug screening and disease modeling applications, Curr.
Pharm. Des. 24 (2018) 5419–5436.
[59] L.M. Griep, F. Wolbers, B. de Wagenaar, P.M. ter Braak, B.B. Weksler, I.A. Romero, P.O. Couraud, I. Vermes, A.D. van der
Meer, A. van den Berg, BBB on chip: microfluidic platform to mechanically and biochemically modulate blood-brain barrier function, Biomed. Microdevices. 15 (2013) 145–150.
[60] J.A. Brown, V. Pensabene, D.A. Markov, V. Allwardt, M.D. Neely, M. Shi, C.M. Britt, O.S. Hoilett, Q. Yang, B.M. Brewer,
Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor, Biomicrofluidics. 9 (2015) 54124.
[61] J. Li, P. Cai, A. Shalviri, J.T. Henderson, C. He, W.D. Foltz, P. Prasad, P.M. Brodersen, Y. Chen, R. DaCosta, A
multifunctional polymeric nanotheranostic system delivers doxorubicin and imaging agents across the blood–brain barrier targeting brain metastases of breast cancer, ACS Nano. 8 (2014) 9925–9940.
[62] N. Kashaninejad, M.R. Nikmaneshi, H. Moghadas, A. Kiyoumarsi Oskouei, M. Rismanian, M. Barisam, M.S. Saidi, B.
Firoozabadi, Organ-tumor-on-a-chip for chemosensitivity assay: A critical review, Micromachines. 7 (2016) 130.
[63] W. Liu, P. Sun, L. Yang, J. Wang, L. Li, J. Wang, Assay of glioma cell responses to an anticancer drug in a cell-based
microfluidic device, Microfluid. Nanofluidics. 9 (2010) 717–725.
[64] T.C. Chang, A.M. Mikheev, W. Huynh, R.J. Monnat, R.C. Rostomily, A. Folch, Parallel microfluidic chemosensitivity testing on individual slice cultures, Lab Chip. 14 (2014) 4540–4551.
[65] M.A. Winkelman, D.Y. Kim, S. Kakarla, A. Grath, N. Silvia, G. Dai, Interstitial flow enhances the formation, connectivity,
and function of 3D brain microvascular networks generated within a microfluidic device, Lab Chip. 22 (2022) 170–192.
[66] J. Sun, M.D. Masterman-Smith, N.A. Graham, J. Jiao, J. Mottahedeh, D.R. Laks, M. Ohashi, J. DeJesus, K. Kamei, K.-B. Lee, A microfluidic platform for systems pathology: multiparameter single-cell signaling measurements of clinical brain tumor specimens, Cancer Res. 70 (2010) 6128–6138.
[67] E. Samiei, A. Seyfoori, B. Toyota, S. Ghavami, M. Akbari, Investigating programmed cell death and tumor invasion in a
three-dimensional (3D) microfluidic model of glioblastoma, Int. J. Mol. Sci. 21 (2020) 3162.
[68] X. Liu, J. Fang, S. Huang, X. Wu, X. Xie, J. Wang, F. Liu, M. Zhang, Z. Peng, N. Hu, Tumor-on-a-chip: From bioinspired
design to biomedical application, Microsystems Nanoeng. 7 (2021) 1–23.
[69] Â. Carvalho, G. Ferreira, D. Seixas, C. Guimarães-Teixeira, R. Henrique, F.J. Monteiro, C. Jerónimo, Emerging lab-on-a-chip approaches for liquid biopsy in lung cancer: status in CTCs and ctDNA research and clinical validation, Cancers (Basel). 13 (2021) 2101.
[70] J. Ko, M.M. Winslow, J. Sage, Mechanisms of small cell lung cancer metastasis, EMBO Mol. Med. 13 (2021) e13122.
[71] M.A.U. Khalid, Y.S. Kim, M. Ali, B.G. Lee, Y.-J. Cho, K.H. Choi, A lung cancer-on-chip platform with integrated biosensors for physiological monitoring and toxicity assessment, Biochem. Eng. J. 155 (2020) 107469.
[72] K. Song, X. Zu, Z. Du, Z. Hu, J. Wang, J. Li, Diversity Models and Applications of 3D Breast Tumor-on-a-Chip,
Micromachines. 12 (2021) 814.
[73] A.D. Dey, A. Bigham, Y. Esmaeili, M. Ashrafizadeh, F.D. Moghaddam, S.C. Tan, S. Yousefiasl, S. Sharma, A. Maleki, N.
Rabiee, Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy, in: Semin. Cancer Biol., Elsevier, 2022.
[74] F.D. Moghaddam, P. Mortazavi, S. Hamedi, M. Nabiuni, N.H. Roodbari, Apoptotic effects of melittin on 4T1 breast cancer cell line is associated with up regulation of Mfn1 and Drp1 mRNA expression, Anti-Cancer Agents Med. Chem. (Formerly Curr. Med. Chem. Agents). 20 (2020) 790–799.
[75] M. Huerta‑Reyes, A. Aguilar‑Rojas, Three‑dimensional models to study breast cancer, Int. J. Oncol. (2021).
[76] L. Zhao, M. Shi, Y. Liu, X. Zheng, J. Xiu, Y. Liu, L. Tian, H. Wang, M. Zhang, X. Zhang, Systematic analysis of different
cell spheroids with a microfluidic device using scanning electrochemical microscopy and gene expression profiling, Anal.
Chem. 91 (2019) 4307–4311.
[77] T. Yuan, D. Gao, S. Li, Y. Jiang, Co-culture of tumor spheroids and monocytes in a collagen matrix-embedded microfluidic device to study the migration of breast cancer cells, Chinese Chem. Lett. 30 (2019) 331–336.
[78] Y. Chen, D. Gao, H. Liu, S. Lin, Y. Jiang, Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening, Anal. Chim. Acta. 898 (2015) 85–92.
[79] S. Chandrasekaran, Y. Geng, L.A. DeLouise, M.R. King, Effect of homotypic and heterotypic interaction in 3D on the Eselectin mediated adhesive properties of breast cancer cell lines, Biomaterials. 33 (2012) 9037–9048.
[80] M.M.G. Grafton, L. Wang, P.-A. Vidi, J. Leary, S.A. Lelièvre, Breast on-a-chip: mimicry of the channeling system of the
breast for development of theranostics, Integr. Biol. 3 (2011) 451–459.
[81] A.D. Wong, P.C. Searson, Live-cell imaging of invasion and intravasation in an artificial microvessel platform, Cancer Res. 74 (2014) 4937–4945.
[82] P.G. Miller, C. Chen, Y.I. Wang, E. Gao, M.L. Shuler, Multiorgan microfluidic platform with breathable lung chamber for
inhalation or intravenous drug screening and development, Biotechnol. Bioeng. 117 (2020) 486–497.
[83] S.M. Grist, S.S. Nasseri, L. Laplatine, J.C. Schmok, D. Yao, J. Hua, L. Chrostowski, K.C. Cheung, Long-term monitoring in
a microfluidic system to study tumour spheroid response to chronic and cycling hypoxia, Sci. Rep. 9 (2019) 1–13.
[84] W. Seo, W.-I. Jeong, Hepatic non-parenchymal cells: Master regulators of alcoholic liver disease?, World J. Gastroenterol. 22 (2016) 1348.
[85] J. Kim, C. Lee, I. Kim, J. Ro, J. Kim, Y. Min, J. Park, V. Sunkara, Y.-S. Park, I. Michael, Three-dimensional human liverchip emulating premetastatic niche formation by breast cancer-derived extracellular vesicles, ACS Nano. 14 (2020) 14971–
14988.
[86] D. Bovard, A. Sandoz, K. Luettich, S. Frentzel, A. Iskandar, D. Marescotti, K. Trivedi, E. Guedj, Q. Dutertre, M.C. Peitsch,
A lung/liver-on-a-chip platform for acute and chronic toxicity studies, Lab Chip. 18 (2018) 3814–3829.
[87] J. Bahnemann, A. Enders, S. Winkler, Microfluidic systems and organ (human) on a chip, in: Basic Concepts 3D Cell Cult., Springer, 2021: pp. 175–200.
[88] K.-J. Jang, K.-Y. Suh, A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells, Lab Chip. 10 (2010) 36–42.
[89] K.-J. Jang, A.P. Mehr, G.A. Hamilton, L.A. McPartlin, S. Chung, K.-Y. Suh, D.E. Ingber, Human kidney proximal tubuleon-a-chip for drug transport and nephrotoxicity assessment, Integr. Biol. 5 (2013) 1119–1129.
[90] Y.-H. Lin, Y.-J. Chen, C.-S. Lai, Y.-T. Chen, C.-L. Chen, J.-S. Yu, Y.-S. Chang, A negative-pressure-driven microfluidic chip
for the rapid detection of a bladder cancer biomarker in urine using bead-based enzyme-linked immunosorbent assay,
Biomicrofluidics. 7 (2013) 24103.
[91] P. Liu, Y. Cao, S. Zhang, Y. Zhao, X. Liu, H. Shi, K. Hu, G. Zhu, B. Ma, H. Niu, A bladder cancer microenvironment
simulation system based on a microfluidic co-culture model, Oncotarget. 6 (2015) 37695.
[92] J. Ahn, J. Lim, N. Jusoh, J. Lee, T.-E. Park, Y. Kim, J. Kim, N.L. Jeon, 3D microfluidic bone tumor microenvironment
comprised of hydroxyapatite/fibrin composite, Front. Bioeng. Biotechnol. (2019) 168.
[93] A. Mansoorifar, R. Gordon, R.C. Bergan, L.E. Bertassoni, Bone‐on‐a‐Chip: Microfluidic Technologies and Microphysiologic Models of Bone Tissue, Adv. Funct. Mater. 31 (2021) 2006796.
[94] C. Zhao, Z. Ge, C. Yang, Microfluidic techniques for analytes concentration, Micromachines. 8 (2017) 28.
[95] L. Vaccari, G. Birarda, G. Grenci, S. Pacor, L. Businaro, Synchrotron radiation infrared microspectroscopy of single living
cells in microfluidic devices: advantages, disadvantages and future perspectives, in: J. Phys. Conf. Ser., IOP Publishing, 2012: p. 12007.