Magnetic Nanocomposite Hydrogel based on Arabic Gum for Remediation of Lead(II) from Contaminated Water

Document Type : Original Article

Authors

Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran

Abstract

A new organic/inorganic biosorbent hydrogel consisting in Arabic gum (AG), Polyamidoxime(PAO) and CuFe2O4 was synthesized by grafting copolymerization method. The first step was the preparation of CuFe2O4 magnetic nanoparticles by the coprecipitation method. Next, using a crosslinker and a radical initiator, acrylonitrile was grafted onto Arabic gum (AG) in the existence of CuFe2O4 nanoparticles to produce Arabic gum-g-polyacrylonitrile/CuFe2O4 (AG-g-PAN/CuFe2O4 ) nanocomposite hydrogel. In the last step, the acrylonitrile groups in the nanocomposite hydrogel were modified using hydroxylamine hydrochloride to obtain Arabic gum-g- polyamidoxime/CuFe2O4 (AG-g-PAO/CuFe2O4) nanocomposite hydrogel. X-ray diffraction (XRD), scanning electron microscopy image (SEM), Fourier transformed infrared (FT-IR), energy-dispersive X-ray analysis (EDX), Caron-Hydrogen-Nitrogen (CHN) analysis, zeta potential, and Brunauer-Emmett-Teller (BET) analyses. vibrating sample magnetometer (VSM) and thermogravimetric analysis (TGA) were used to characterize the produced nanocomposite. The adsorption effectiveness of AG-g-PAO/CuFe2O4 for the removal of Pb(II) from aqueous solutions was investigated under various experimental settings, including starting Pb(II) concentration, contact time, adsorbent dose, and pH. The Langmuir isotherm model accurately categorised the experimental adsorption data, and the maximum adsorption capacity (Qmax) of the produced biosorbent for Pb(II) was determined to be 192.30 mg/g. The pseudo-second-order model suited the adsorption kinetic data well. Additionally, after three consecutive cycles, the AG-g-PAO/CuFe2O4 can be successfully reused without a significant loss in adsorption performance.

Graphical Abstract

Magnetic Nanocomposite Hydrogel based on Arabic Gum for Remediation of Lead(II) from Contaminated Water

Keywords


 [1] E. Alizadeh, H. Baseri, Photocatalytic degradation of Sumatriptan Succinate by ZnO, Fe doped ZnO, and TiO2-ZnO
nanocatalysts, Mater. Chem. Horizons., 1(1) (2022) 7–21.
[2] A. Mehdizadeh, P. Najafi Moghadam, S. Ehsanimehr, A.R. Fareghi, Preparation of a New Magnetic Nanocomposite for the Removal of Dye Pollutions from Aqueous Solutions: Synthesis and Characterization, Mater. Chem. Horizons., 1(1) (2022) 23–34.
[3] V. Srivastava, E.N. Zare, P. Makvandi, X.-q. Zheng, S. Iftekhar, A. Wu, V.V. Padil, B. Mokhtari, R.S. Varma, F.R. Tay,
Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents, Chemosphere, 258 (2020) 127324.
[4] L. Zhang, Y. Zeng, Z. Cheng, Removal of heavy metal ions using chitosan and modified chitosan: A review, J. Mol. Liq., 214 (2016) 175-191.
[5] S . Iftekhar, G. Heidari, N . Amanat, E N . Zare, M.B . Asif, M. Hassanpour, V.P. Lehto, M. Sillanpaa, Porous materials for the recovery of rare earth elements, platinum group metals, and other valuable metals: a review, Environ. Chem. Lett., (2022) https://doi.org/10.1007/s10311-022-01486-x
[6] F.B. Kheyrabadi, E.N. Zare, Antimicrobial nanocomposite adsorbent based on poly (meta-phenylenediamine) for remediation of lead (II) from water medium, Sci. Rep., 12(1) (2022) 1-14.
[7] E.J. Olguín, G. Sánchez-Galván, Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate
between bioadsorption and bioaccumulation, N. Biotechnol., 30 (2012) 3-8.
[8] H.N.M.E. Mahmud, A.O. Huq, R. binti Yahya, The removal of heavy metal ions from wastewater/aqueous solution using
polypyrrole-based adsorbents: a review, RSC Adv., 6 (2016) 14778-14791.
[9] H. Mittal, A. Maity, S.S. Ray, Synthesis of co-polymer-grafted gum karaya and silica hybrid organic–inorganic hydrogel
nanocomposite for the highly effective removal of methylene blue, Chem. Eng. J., 279 (2015) 166-179.
[10] E.N. Zare, M.M. Lakouraj, N. Kasirian, Development of effective nano-biosorbent based on poly m-phenylenediamine
grafted dextrin for removal of Pb (II) and methylene blue from water, Carbohydr. Polym., 201 (2018) 539-548.
[11] M.M. Lakouraj, F. Hasanzadeh, E.N. Zare, Nanogel and super-paramagnetic nanocomposite of thiacalix [4] arene
functionalized chitosan: synthesis, characterization and heavy metal sorption, Iran. Polym. J., 23 (2014) 933-945.
[12] R. Sharma, B.S. Kaith, S. Kalia, D. Pathania, A. Kumar, N. Sharma, R.M. Street, C. Schauer, Biodegradable and conducting hydrogels based on Guar gum polysaccharide for antibacterial and dye removal applications, J. Environ. Manage., 162 (2015) 37-45.
[13] H. Mittal, A. Maity, S.S. Ray, Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions, Appl. Surf. Sci. , 364 (2016) 917-930.
[14] E. Makhado, S. Pandey, P.N. Nomngongo, J. Ramontja, Preparation and characterization of xanthan gum-cl-poly (acrylicacid)/o-MWCNTs hydrogel nanocomposite as highly effective re-usable adsorbent for removal of methylene blue from aqueous solutions, J. Colloid Interface Sci., 513 (2018) 700-714.
[15] H. Mittal, A. Maity, S.S. Ray, Effective removal of cationic dyes from aqueous solution using gum ghatti-based
biodegradable hydrogel, Int. J. Biol. Macromol., 79 (2015) 8-20.
[16] R. Sahraei, M. Ghaemy, Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity, Carbohydr. Polym., 157 (2017) 823-833.
[17] J. Ma, G. Zhou, L. Chu, Y. Liu, C. Liu, S. Luo, Y. Wei, Efficient removal of heavy metal ions with an EDTA functionalized
chitosan/polyacrylamide double network hydrogel, ACS Sustain. Chem. Eng. , 5 (2017) 843-851.
[18] R.R. Mohamed, M.H.A. Elella, M.W. Sabaa, Cytotoxicity and metal ions removal using antibacterial biodegradable
hydrogels based on N-quaternized chitosan/poly (acrylic acid), Int. J. Biol. Macromol. , 98 (2017) 302-313.
[19] A. Islam, G. Phillips, A. Sljivo, M. Snowden, P. Williams, A review of recent developments on the regulatory, structural and functional aspects of gum arabic, Food Hydrocoll., 11 (1997) 493-505.
[20] Y. Manawi, G. McKay, N. Ismail, A.K. Fard, V. Kochkodan, M.A. Atieh, Enhancing lead removal from water by complexassisted filtration with acacia gum, Chem. Eng. J., 352 (2018) 828-836.
[21] E. Abdel
Bary, A. Elbedwehy, Graft copolymerization of polyacrylic acid onto Acacia gum using erythrosine–thiourea as a visible light photoinitiator: Application for dye removal, Polym. Bull., 75 (2018) 3325-3340.
[22] V.V. Padil, S. Wacławek, M.
Černík, R.S. Varma, Tree gum-based renewable materials: Sustainable applications in
nanotechnology, biomedical and environmental fields, Biotechnol. Adv., 36 (2018) 1984-2016.
[23] A. Masoumi, M. Ghaemy, Removal of metal ions from water using nanohydrogel tragacanth gum-g-polyamidoxime:
isotherm and kinetic study, Carbohydr. Polym., 108 (2014) 206-215.
[24] M.L. Rahman, C.J. Fui, M.S. Sarjadi, S.E. Arshad, B. Musta, M.H. Abdullah, S.M. Sarkar, E.J. O’Reilly, Poly (amidoxime)
ligand derived from waste palm fiber for the removal of heavy metals from electroplating wastewater, Environ. Sci. Pollut.,
27 (2020) 34541-34556.
[25] K. Saeed, S. Haider, T.-J. Oh, S.-Y. Park, Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption, J. Membr. Sci., 322 (2008) 400-405.
[26] J. Tan, Y. Song, X. Huang, L. Zhou, Facile functionalization of natural peach gum polysaccharide with multiple amine groups for highly efficient removal of toxic hexavalent chromium (Cr (VI)) ions from water, ACS omega, 3 (2018) 17309-17318.
[27] L. Zeng, Q. Liu, M. Lu, E. Liang, G. Wang, W. Xu, Modified natural loofah sponge as an effective heavy metal ion adsorbent: Amidoxime functionalized poly (acrylonitrile-g-loofah), Chem. Eng. Res. Des., 150 (2019) 26-32.
[28] S. Tao, F. Gao, X. Liu, O.T. Sørensen, Preparation and gas-sensing properties of CuFe
2O4 at reduced temperature, Mater. Sci. Eng. B, 77 (2000) 172-176.
[29] F. Hassanzadeh-Afruzi, A. Maleki, E.N. Zare, Efficient remediation of chlorpyrifos pesticide from contaminated water by superparamagnetic adsorbent based on Arabic gum-grafted-polyamidoxime, Int. J. Biol. Macromol., 203 (2022) 445-456.
[30] F. Hassanzadeh-Afruzi, A. Maleki, E.N. Zare, Novel eco-friendly acacia gum-grafted-polyamidoxime@ copper ferrite
nanocatalyst for synthesis of pyrazolopyridine derivatives, Journal of Nanostructure in Chemistry, (2022) 1-12.
[31] M.J. Zohuriaan
Mehr, Z. Motazedi, K. Kabiri, A. ErshadLangroudi, New superabsorbing hydrogel hybrids from gum arabic and acrylic monomers, J. Macromol. Sci. Pure App.l Chem., 42 (2005) 1655-1666.
[32] K. Juby, C. Dwivedi, M. Kumar, S. Kota, H. Misra, P. Bajaj, Silver nanoparticle-loaded PVA/gum acacia hydrogel: Synthesis, characterization and antibacterial study, Carbohydr. Polym., 89 (2012) 906-913.
[33] M. Alang, J. Barminas, B. Aliyu, S. Osemeahon, Synthesis and optimization of polyacrylamide and gum arabic graft
copolymer, Int. J. Biol. Macromol. , 5 (2011) 1694-1702.
[34] F. Zonatto, E.C. Muniz, E.B. Tambourgi, A.T. Paulino, Adsorption and controlled release of potassium, phosphate and
ammonia from modified Arabic gum-based hydrogel, Int. J. Biol. Macromol., 105 (2017) 363-369.
[35] A.G. de Souza, C.T. Cesco, G.F. de Lima, S.E. Artifon, D.d.S. Rosa, A.T. Paulino, Arabic gum-based composite hydrogels
reinforced with eucalyptus and pinus residues for controlled phosphorus release, Int. J. Biol. Macromol. , 140 (2019) 33-42.
[36] S. Hindi, M.O. Albureikan, A.A. Al-Ghamdi, H. Alhummiany, M.S. Ansari, Synthesis, characterization and biodegradation
of gum Arabic-based bioplastic membranes, Nanosci. Nanotechnol., 4 (2017) 32-42.
[37] H.E. Emam, Arabic gum as bio-synthesizer for Ag–Au bimetallic nanocomposite using seed-mediated growth technique and its biological efficacy, J. Polym. Environ. , 27 (2019) 210-223.
[38] P. Rezaei, M. Rezaei, F. Meshkani, Low temperature CO oxidation over mesoporous iron and copper mixed oxides
nanopowders synthesized by a simple one-pot solid-state method, Process Saf. Environ. Prot., 119 (2018) 379-388.
[39] J.K. Rajput, P. Arora, G. Kaur, M. Kaur, CuFe2O4 magnetic heterogeneous nanocatalyst: Low power sonochemicalcoprecipitation preparation and applications in synthesis of 4H-chromene-3-carbonitrile scaffolds, Ultrason. Sonochem., 26 (2015) 229-240.
[40] M.J. Iqbal, N. Yaqub, B. Sepiol, B. Ismail, A study of the influence of crystallite size on the electrical and magnetic properties of CuFe
2O4, Mater. Res. Bull., 46 (2011) 1837-1842.
[41] E. Agouriane, B. Rabi, A. Essoumhi, A. Razouk, M. Sahlaoui, B. Costa, M. Sajieddine, Structural and magnetic properties of CuFe
2O4 ferrite nanoparticles synthesized by co-precipitation, J. Mater. Environ. Sci., 7 (2016) 4116-4120.
[42] J. Li, J. Wang, W. Wang, X. Zhang, Symbiotic Aerogel Fibers Made via In-Situ Gelation of Aramid Nanofibers with
Polyamidoxime for Uranium Extraction, Molecules, 24 (2019) 1821.
[43] J. Feng, L. Su, Y. Ma, C. Ren, Q. Guo, X. Chen, CuFe
2O4 magnetic nanoparticles: A simple and efficient catalyst for the
reduction of nitrophenol, Chem. Eng. J., 221 (2013) 16-24.
[44] V. Sharma, P. Rekha, P. Mohanty, Nanoporous hypercrosslinked polyaniline: An efficient adsorbent for the adsorptive
removal of cationic and anionic dyes, J. Mol. Liq., 222 (2016) 1091-1100.
[45] F. Arshad, M. Selvaraj, J. Zain, F. Banat, M.A. Haija, Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions, Sep. Purif. Technol., 209 (2019) 870-880.
[46] N.K. Gupta, A. Sengupta, V.G. Rane, R. Kadam, Amide-mediated enhancement of sorption efficiency of trivalent f-elements on functionalized carbon nanotube: evidence of physisorption, Sep. Sci. Technol., 52 (2017) 2049-2061.
[47] H.S. Ibrahim, T.S. Jamil, E.Z. Hegazy, Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: II. Isotherm models, J. Hazard. Mater., 182 (2010) 842-847.
[48] S.-W. Lv, J.-M. Liu, C.-Y. Li, N. Zhao, Z.-H. Wang, S. Wang, A novel and universal metal-organic frameworks sensing
platform for selective detection and efficient removal of heavy metal ions, Chem. Eng. J., 375 (2019) 122111.
[49] R. Ahmad, A. Mirza, Synthesis of Guar gum/bentonite a novel bionanocomposite: isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye, J. Mol. Liq., 249 (2018) 805-814.
[50] C. Cao, H. Kang, N. Che, Z. Liu, P. Li, C. Zhang, W. Li, R. Liu, Y. Huang, Wool graft polyacrylamidoxime as the adsorbent for both cationic and anionic toxic ions from aqueous solutions, RSC Adv., 4 (2014) 60609-60616.
[51] R. Sahraei, Z.S. Pour, M. Ghaemy, Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: removal of heavy metals and dyes from water, J. Clean. Prod. , 142 (2017) 2973-2984.
[52] A. Mirza, R. Ahmad, Novel recyclable (Xanthan gum/montmorillonite) bionanocomposite for the removal of Pb (II) from synthetic and industrial wastewater, Environ. Technol. Innov., 11 (2018) 241-252.
[53] S.P. Verma, B. Sarkar, Simultaneous removal of Cd (II) and p-cresol from wastewater by micellar-enhanced ultrafiltration using rhamnolipid: Flux decline, adsorption kinetics and isotherm studies, J. Environ. Manage., 213 (2018) 217-235.
[54] S. Kulkarni, J. Kaware, Regeneration and recovery in adsorption-a review, Int. J. Innov. Res. Sci. Eng. Technol., 1 (2014)
61-65.