[1] E. Alizadeh, H. Baseri, Photocatalytic degradation of Sumatriptan Succinate by ZnO, Fe doped ZnO, and TiO2-ZnO
nanocatalysts, Mater. Chem. Horizons., 1(1) (2022) 7–21.
[2] A. Mehdizadeh, P. Najafi Moghadam, S. Ehsanimehr, A.R. Fareghi, Preparation of a New Magnetic Nanocomposite for the Removal of Dye Pollutions from Aqueous Solutions: Synthesis and Characterization, Mater. Chem. Horizons., 1(1) (2022) 23–34.
[3] V. Srivastava, E.N. Zare, P. Makvandi, X.-q. Zheng, S. Iftekhar, A. Wu, V.V. Padil, B. Mokhtari, R.S. Varma, F.R. Tay,
Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents, Chemosphere, 258 (2020) 127324.
[4] L. Zhang, Y. Zeng, Z. Cheng, Removal of heavy metal ions using chitosan and modified chitosan: A review, J. Mol. Liq., 214 (2016) 175-191.
[5] S . Iftekhar, G. Heidari, N . Amanat, E N . Zare, M.B . Asif, M. Hassanpour, V.P. Lehto, M. Sillanpaa, Porous materials for the recovery of rare earth elements, platinum group metals, and other valuable metals: a review, Environ. Chem. Lett., (2022) https://doi.org/10.1007/s10311-022-01486-x
[6] F.B. Kheyrabadi, E.N. Zare, Antimicrobial nanocomposite adsorbent based on poly (meta-phenylenediamine) for remediation of lead (II) from water medium, Sci. Rep., 12(1) (2022) 1-14.
[7] E.J. Olguín, G. Sánchez-Galván, Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate
between bioadsorption and bioaccumulation, N. Biotechnol., 30 (2012) 3-8.
[8] H.N.M.E. Mahmud, A.O. Huq, R. binti Yahya, The removal of heavy metal ions from wastewater/aqueous solution using
polypyrrole-based adsorbents: a review, RSC Adv., 6 (2016) 14778-14791.
[9] H. Mittal, A. Maity, S.S. Ray, Synthesis of co-polymer-grafted gum karaya and silica hybrid organic–inorganic hydrogel
nanocomposite for the highly effective removal of methylene blue, Chem. Eng. J., 279 (2015) 166-179.
[10] E.N. Zare, M.M. Lakouraj, N. Kasirian, Development of effective nano-biosorbent based on poly m-phenylenediamine
grafted dextrin for removal of Pb (II) and methylene blue from water, Carbohydr. Polym., 201 (2018) 539-548.
[11] M.M. Lakouraj, F. Hasanzadeh, E.N. Zare, Nanogel and super-paramagnetic nanocomposite of thiacalix [4] arene
functionalized chitosan: synthesis, characterization and heavy metal sorption, Iran. Polym. J., 23 (2014) 933-945.
[12] R. Sharma, B.S. Kaith, S. Kalia, D. Pathania, A. Kumar, N. Sharma, R.M. Street, C. Schauer, Biodegradable and conducting hydrogels based on Guar gum polysaccharide for antibacterial and dye removal applications, J. Environ. Manage., 162 (2015) 37-45.
[13] H. Mittal, A. Maity, S.S. Ray, Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions, Appl. Surf. Sci. , 364 (2016) 917-930.
[14] E. Makhado, S. Pandey, P.N. Nomngongo, J. Ramontja, Preparation and characterization of xanthan gum-cl-poly (acrylicacid)/o-MWCNTs hydrogel nanocomposite as highly effective re-usable adsorbent for removal of methylene blue from aqueous solutions, J. Colloid Interface Sci., 513 (2018) 700-714.
[15] H. Mittal, A. Maity, S.S. Ray, Effective removal of cationic dyes from aqueous solution using gum ghatti-based
biodegradable hydrogel, Int. J. Biol. Macromol., 79 (2015) 8-20.
[16] R. Sahraei, M. Ghaemy, Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity, Carbohydr. Polym., 157 (2017) 823-833.
[17] J. Ma, G. Zhou, L. Chu, Y. Liu, C. Liu, S. Luo, Y. Wei, Efficient removal of heavy metal ions with an EDTA functionalized
chitosan/polyacrylamide double network hydrogel, ACS Sustain. Chem. Eng. , 5 (2017) 843-851.
[18] R.R. Mohamed, M.H.A. Elella, M.W. Sabaa, Cytotoxicity and metal ions removal using antibacterial biodegradable
hydrogels based on N-quaternized chitosan/poly (acrylic acid), Int. J. Biol. Macromol. , 98 (2017) 302-313.
[19] A. Islam, G. Phillips, A. Sljivo, M. Snowden, P. Williams, A review of recent developments on the regulatory, structural and functional aspects of gum arabic, Food Hydrocoll., 11 (1997) 493-505.
[20] Y. Manawi, G. McKay, N. Ismail, A.K. Fard, V. Kochkodan, M.A. Atieh, Enhancing lead removal from water by complexassisted filtration with acacia gum, Chem. Eng. J., 352 (2018) 828-836.
[21] E. Abdel‐Bary, A. Elbedwehy, Graft copolymerization of polyacrylic acid onto Acacia gum using erythrosine–thiourea as a visible light photoinitiator: Application for dye removal, Polym. Bull., 75 (2018) 3325-3340.
[22] V.V. Padil, S. Wacławek, M. Černík, R.S. Varma, Tree gum-based renewable materials: Sustainable applications in
nanotechnology, biomedical and environmental fields, Biotechnol. Adv., 36 (2018) 1984-2016.
[23] A. Masoumi, M. Ghaemy, Removal of metal ions from water using nanohydrogel tragacanth gum-g-polyamidoxime:
isotherm and kinetic study, Carbohydr. Polym., 108 (2014) 206-215.
[24] M.L. Rahman, C.J. Fui, M.S. Sarjadi, S.E. Arshad, B. Musta, M.H. Abdullah, S.M. Sarkar, E.J. O’Reilly, Poly (amidoxime)
ligand derived from waste palm fiber for the removal of heavy metals from electroplating wastewater, Environ. Sci. Pollut.,
27 (2020) 34541-34556.
[25] K. Saeed, S. Haider, T.-J. Oh, S.-Y. Park, Preparation of amidoxime-modified polyacrylonitrile (PAN-oxime) nanofibers and their applications to metal ions adsorption, J. Membr. Sci., 322 (2008) 400-405.
[26] J. Tan, Y. Song, X. Huang, L. Zhou, Facile functionalization of natural peach gum polysaccharide with multiple amine groups for highly efficient removal of toxic hexavalent chromium (Cr (VI)) ions from water, ACS omega, 3 (2018) 17309-17318.
[27] L. Zeng, Q. Liu, M. Lu, E. Liang, G. Wang, W. Xu, Modified natural loofah sponge as an effective heavy metal ion adsorbent: Amidoxime functionalized poly (acrylonitrile-g-loofah), Chem. Eng. Res. Des., 150 (2019) 26-32.
[28] S. Tao, F. Gao, X. Liu, O.T. Sørensen, Preparation and gas-sensing properties of CuFe2O4 at reduced temperature, Mater. Sci. Eng. B, 77 (2000) 172-176.
[29] F. Hassanzadeh-Afruzi, A. Maleki, E.N. Zare, Efficient remediation of chlorpyrifos pesticide from contaminated water by superparamagnetic adsorbent based on Arabic gum-grafted-polyamidoxime, Int. J. Biol. Macromol., 203 (2022) 445-456.
[30] F. Hassanzadeh-Afruzi, A. Maleki, E.N. Zare, Novel eco-friendly acacia gum-grafted-polyamidoxime@ copper ferrite
nanocatalyst for synthesis of pyrazolopyridine derivatives, Journal of Nanostructure in Chemistry, (2022) 1-12.
[31] M.J. Zohuriaan‐Mehr, Z. Motazedi, K. Kabiri, A. Ershad‐Langroudi, New super‐absorbing hydrogel hybrids from gum arabic and acrylic monomers, J. Macromol. Sci. Pure App.l Chem., 42 (2005) 1655-1666.
[32] K. Juby, C. Dwivedi, M. Kumar, S. Kota, H. Misra, P. Bajaj, Silver nanoparticle-loaded PVA/gum acacia hydrogel: Synthesis, characterization and antibacterial study, Carbohydr. Polym., 89 (2012) 906-913.
[33] M. Alang, J. Barminas, B. Aliyu, S. Osemeahon, Synthesis and optimization of polyacrylamide and gum arabic graft
copolymer, Int. J. Biol. Macromol. , 5 (2011) 1694-1702.
[34] F. Zonatto, E.C. Muniz, E.B. Tambourgi, A.T. Paulino, Adsorption and controlled release of potassium, phosphate and
ammonia from modified Arabic gum-based hydrogel, Int. J. Biol. Macromol., 105 (2017) 363-369.
[35] A.G. de Souza, C.T. Cesco, G.F. de Lima, S.E. Artifon, D.d.S. Rosa, A.T. Paulino, Arabic gum-based composite hydrogels
reinforced with eucalyptus and pinus residues for controlled phosphorus release, Int. J. Biol. Macromol. , 140 (2019) 33-42.
[36] S. Hindi, M.O. Albureikan, A.A. Al-Ghamdi, H. Alhummiany, M.S. Ansari, Synthesis, characterization and biodegradation
of gum Arabic-based bioplastic membranes, Nanosci. Nanotechnol., 4 (2017) 32-42.
[37] H.E. Emam, Arabic gum as bio-synthesizer for Ag–Au bimetallic nanocomposite using seed-mediated growth technique and its biological efficacy, J. Polym. Environ. , 27 (2019) 210-223.
[38] P. Rezaei, M. Rezaei, F. Meshkani, Low temperature CO oxidation over mesoporous iron and copper mixed oxides
nanopowders synthesized by a simple one-pot solid-state method, Process Saf. Environ. Prot., 119 (2018) 379-388.
[39] J.K. Rajput, P. Arora, G. Kaur, M. Kaur, CuFe2O4 magnetic heterogeneous nanocatalyst: Low power sonochemicalcoprecipitation preparation and applications in synthesis of 4H-chromene-3-carbonitrile scaffolds, Ultrason. Sonochem., 26 (2015) 229-240.
[40] M.J. Iqbal, N. Yaqub, B. Sepiol, B. Ismail, A study of the influence of crystallite size on the electrical and magnetic properties of CuFe2O4, Mater. Res. Bull., 46 (2011) 1837-1842.
[41] E. Agouriane, B. Rabi, A. Essoumhi, A. Razouk, M. Sahlaoui, B. Costa, M. Sajieddine, Structural and magnetic properties of CuFe2O4 ferrite nanoparticles synthesized by co-precipitation, J. Mater. Environ. Sci., 7 (2016) 4116-4120.
[42] J. Li, J. Wang, W. Wang, X. Zhang, Symbiotic Aerogel Fibers Made via In-Situ Gelation of Aramid Nanofibers with
Polyamidoxime for Uranium Extraction, Molecules, 24 (2019) 1821.
[43] J. Feng, L. Su, Y. Ma, C. Ren, Q. Guo, X. Chen, CuFe2O4 magnetic nanoparticles: A simple and efficient catalyst for the
reduction of nitrophenol, Chem. Eng. J., 221 (2013) 16-24.
[44] V. Sharma, P. Rekha, P. Mohanty, Nanoporous hypercrosslinked polyaniline: An efficient adsorbent for the adsorptive
removal of cationic and anionic dyes, J. Mol. Liq., 222 (2016) 1091-1100.
[45] F. Arshad, M. Selvaraj, J. Zain, F. Banat, M.A. Haija, Polyethylenimine modified graphene oxide hydrogel composite as an efficient adsorbent for heavy metal ions, Sep. Purif. Technol., 209 (2019) 870-880.
[46] N.K. Gupta, A. Sengupta, V.G. Rane, R. Kadam, Amide-mediated enhancement of sorption efficiency of trivalent f-elements on functionalized carbon nanotube: evidence of physisorption, Sep. Sci. Technol., 52 (2017) 2049-2061.
[47] H.S. Ibrahim, T.S. Jamil, E.Z. Hegazy, Application of zeolite prepared from Egyptian kaolin for the removal of heavy metals: II. Isotherm models, J. Hazard. Mater., 182 (2010) 842-847.
[48] S.-W. Lv, J.-M. Liu, C.-Y. Li, N. Zhao, Z.-H. Wang, S. Wang, A novel and universal metal-organic frameworks sensing
platform for selective detection and efficient removal of heavy metal ions, Chem. Eng. J., 375 (2019) 122111.
[49] R. Ahmad, A. Mirza, Synthesis of Guar gum/bentonite a novel bionanocomposite: isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye, J. Mol. Liq., 249 (2018) 805-814.
[50] C. Cao, H. Kang, N. Che, Z. Liu, P. Li, C. Zhang, W. Li, R. Liu, Y. Huang, Wool graft polyacrylamidoxime as the adsorbent for both cationic and anionic toxic ions from aqueous solutions, RSC Adv., 4 (2014) 60609-60616.
[51] R. Sahraei, Z.S. Pour, M. Ghaemy, Novel magnetic bio-sorbent hydrogel beads based on modified gum tragacanth/graphene oxide: removal of heavy metals and dyes from water, J. Clean. Prod. , 142 (2017) 2973-2984.
[52] A. Mirza, R. Ahmad, Novel recyclable (Xanthan gum/montmorillonite) bionanocomposite for the removal of Pb (II) from synthetic and industrial wastewater, Environ. Technol. Innov., 11 (2018) 241-252.
[53] S.P. Verma, B. Sarkar, Simultaneous removal of Cd (II) and p-cresol from wastewater by micellar-enhanced ultrafiltration using rhamnolipid: Flux decline, adsorption kinetics and isotherm studies, J. Environ. Manage., 213 (2018) 217-235.
[54] S. Kulkarni, J. Kaware, Regeneration and recovery in adsorption-a review, Int. J. Innov. Res. Sci. Eng. Technol., 1 (2014)
61-65.