[1] X. Jin, G. Li, T. Xu, L. Su, D. Yan, X. Zhang, Fully integrated flexible biosensor for wearable continuous glucose monitoring, Biosens. Bioelectron., 196 (2022) 113760.
[2] K. Mitsubayashi, K. Toma, K. Iitani, T. Arakawa, Gas-phase Biosensors: A Review, Sens. Actuators B Chem., 367 (2022)
132053.
[3] S. Liu, K. Xiang, C. Wang, Y. Zhang, G.-C. Fan, W. Wang, H. Han, DNA Nanotweezers for Biosensing Applications: Recent
Advances and Future Prospects, ACS Sens. 7 (2022) 3–20.
[4] D. Khorsandi, M. Nodehi, T. Waqar, M. Shabani, B. Kamare, E.N. Zare, S. Ersoy, M. Annabestani, M.F. Çelebi, A. Kafadenk, Manufacturing of microfluidic sensors utilizing 3d printing technologies: A production system, J. Nanomater., 2021 (2021) 5537074.
[5] X. Zheng, C. Ni, W. Xiao, Y. Liang, Y. Li, Ionic liquid grafted polyethersulfone nanofibrous membrane as recyclable adsorbent with simultaneous dye, heavy metal removal and antibacterial property, Chem. Eng. Sci., 428 (2022) 132111.
[6] N. Nikfarjam, M. Ghomi, T. Agarwal, M. Hassanpour, E. Sharifi, D. Khorsandi, M. Ali Khan, F. Rossi, A. Rossetti, E.
Nazarzadeh Zare, Antimicrobial ionic liquid‐based materials for biomedical applications, Adv. Funct. Mater., 31 (2021)
2104148.
[7] N. Maleki, A. Safavi, F. Tajabadi, High-performance carbon composite electrode based on an ionic liquid as a binder, Anal. Chem., 78 (2006) 3820–3826.
[8] A.M. Babu, R. Rajeev, D.A. Thadathil, A. Varghese, G. Hegde, Surface modulation and structural engineering of graphitic carbon nitride for electrochemical sensing applications, J. Nanostructure Chem., (2021) 1–43.
[9] P. Butmee, G. Tumcharern, P. Saejueng, D. Stankovic, A. Ortner, J. Jitcharoen, K. Kalcher, A. Samphao, A direct and sensitive electrochemical sensing platform based on ionic liquid functionalized graphene nanoplatelets for the detection of bisphenol A, J. Electroanal. Chem.833 (2019) 370–379.
[10] N. Li, X. Liu, J. Zhu, B. Zhou, J. Jing, A. Wang, R. Xu, Z. Wen, X. Shi, S. Guo, Simple and sensitive detection of acrylamide based on hemoglobin immobilization in carbon ionic liquid paste electrode, Food Control. 109 (2020) 106764.
[11] X. Zheng, J. Wu, X. Wang, Z. Yang, Cellulose-reinforced poly (cyclocarbonate-ether)-based composite polymer electrolyte and facile gel interfacial modification for solid-state lithium-ion batteries, Chem. Eng. J., 446(3) (2022) 137194.
[12] S. Qu, M. Li, C. Zhang, Y. Sun, J. Duan, W. Wang, J. Li, X. Li, Sulfonated poly (ether ether ketone) doped with ammonium ionic liquids and nano-silicon dioxide for polymer electrolyte membranes, Polymers (Basel). 11 (2018) 7.
[13] M.L. Firmansyah, T. Ilmi, R.R. Mukti, M. Goto, Facile fabrication of a phosphonium-based ionic liquid impregnated chitosan adsorbent for the recovery of hexavalent chromium, RSC Adv. 12 (2022) 11207–11215.
[14] O.A. Lambri, B. Weidenfeller, F.G. Bonifacich, L. Mohr-Weidenfeller, F.D. Lambri, J. Xu, G.I. Zelada, F. Endres, Study of
the damping behaviour in samples consisting of iron electro-deposited on copper in an ionic liquid, J. Alloys Compd., 918
(2022) 165462.
[15] Y. Yin, H. Zhu, T. Wu, P. Liao, C. Lan, C. Li, Bistable Silver Electrodeposition‐Based Electrochromic Device with Reversible Three‐State Optical Transformation By Using WO3 Nanoislands Modified ITO Electrode, Adv. Mater. Interfaces 9(15) (2022) 2102566.[16] E.N. Zare, M.M. Lakouraj, M. Baghayeri, Electro-magnetic polyfuran/Fe3O4 nanocomposite: Synthesis, characterization,
antioxidant activity and its application as a biosensor, Int. J. Polym. Mater. Polym. Biomater. 64(4) (2015) 175-183.
[17] N. Ferreyra, L. Coche-Guérente, P. Labbé, Construction of layer-by-layer self-assemblies of glucose oxidase and cationic
polyelectrolyte onto glassy carbon electrodes and electrochemical study of the redox-mediated enzymatic activity, Electrochim.
Acta 49 (2004) 477–484.
[18] M. Ferreira, P.A. Fiorito, O.N. Oliveira Jr, S.I.C. de Torresi, Enzyme-mediated amperometric biosensors prepared with the
Layer-by-Layer (LbL) adsorption technique, Biosens. Bioelectron., 19 (2004) 1611–1615.
[19] E.J. Calvo, R. Etchenique, L. Pietrasanta, A. Wolosiuk, C. Danilowicz, Layer-By-Layer Self-Assembly of Glucose Oxidase
and Os (Bpy) 2ClPyCH2NH- poly (Allylamine) Bioelectrode, Anal Chem. 73 (2001) 1161–1168.
[20] R.M. Iost, F.N. Crespilho, Layer-by-layer self-assembly and electrochemistry: applications in biosensing and bioelectronics,
Biosens. Bioelectron., 31 (2012) 1–10.
[21] J.B. Schlenoff, Retrospective on the future of polyelectrolyte multilayers, Langmuir. 25 (2009) 14007–14010.
[22] G. Rosales, F. Alves, F. Costa, M.M. Pastor, V.C. Fernandes, S. Mattedi, J.S. Boaventura, Development of a bioelectrode
based on catalase enzyme and the novel protic ionic liquid pentaethylenehexammonium acetate (PEHAA), J. Mol. Liq., 280
(2019) 182–190.
[23] C. Salvo-Comino, C. Garcia-Hernandez, C. Garcia-Cabezon, M.L. Rodriguez-Mendez, Promoting laccase sensing activity for
catechol detection using LBL assemblies of chitosan/ionic liquid/phthalocyanine as immobilization surfaces,
Bioelectrochemistry. 132 (2020) 107407.
[24] S. Wu, J. Hao, S. Yang, Y. Sun, Y. Wang, W. Zhang, H. Mao, X.-M. Song, Layer-by-layer self-assembly film of PEI-reduced graphene oxide composites and cholesterol oxidase for ultrasensitive cholesterol biosensing, Sens. Actuators B Chem., 298 (2019) 126856.
[25] D. Zappi, G. Masci, C. Sadun, C. Tortolini, M.L. Antonelli, P. Bollella, Evaluation of new cholinium-amino acids based room temperature ionic liquids (RTILs) as immobilization matrix for electrochemical biosensor development: Proof-of-concept with Trametes Versicolor laccase, Microchem. J., 141 (2018) 346–352.
[26] C. Salvo-Comino, C. García-Hernández, C. García-Cabezón, M.L. Rodríguez-Méndez, Discrimination of milks with a
multisensor system based on layer-by-layer films, Sensors. 18 (2018) 2716.
[27] D.E. Camilo, C.M. Miyazaki, F.M. Shimizu, M. Ferreira, Improving direct immunoassay response by layer-by-layer films of gold nanoparticles–antibody conjugate towards label-free detection, Mater.Sci.Eng.C., 102 (2019) 315–323.
[28] C. Salvo-Comino, C. Garcia-Hernandez, C. Garcia-Cabezon, M.L. Rodriguez-Mendez, Promoting laccase sensing activity for catechol detection using LBL assemblies of chitosan/ionic liquid/phthalocyanine as immobilization surfaces,
Bioelectrochemistry. 132 (2020) 107407.
[29] S. Jahandari, M.A. Taher, H. Karimi-Maleh, A. Khodadadi, E. Faghih-Mirzaei, A powerful DNA-based voltammetric
biosensor modified with Au nanoparticles, for the determination of Temodal; an electrochemical and docking investigation, J. Electroanal. Chem., 840 (2019) 313–318.
[30] B. Jiang, P. Dong, J. Zheng, A novel amperometric biosensor based on covalently attached multilayer assemblies of gold nanoparticles, diazo-resins and acetylcholinesterase for the detection of organophosphorus pesticides, Talanta. 183 (2018) 114–121.
[31] M. Cisternas, H. Bhuyan, M.J. Retamal, N. Casanova-Morales, M. Favre, U.G. Volkmann, P. Saikia, D.E. Diaz-Droguett, S.
Mändl, D. Manova, Study of nitrogen implantation in Ti surface using plasma immersion ion implantation & deposition
technique as biocompatible substrate for artificial membranes, Mater. Sci. Eng. C. 113 (2020) 111002.
[32] A.A. Hasseb, O.R. Shehab, R.M. el Nashar, Application of molecularly imprinted polymers for electrochemical detection of some important biomedical markers and pathogens, Curr. Opin. Electrochem., 31 (2022) 100848.
[33] V. Narwal, R. Deswal, B. Batra, V. Kalra, R. Hooda, M. Sharma, J.S. Rana, Cholesterol biosensors: A review, Steroids. 143
(2019) 6–17.
[34] J. Lipton, G.-M. Weng, J.A. Rӧhr, H. Wang, A.D. Taylor, Layer-by-layer assembly of two-dimensional materials: meticulous control on the nanoscale, Matter. 2 (2020) 1148–1165.
[35] K. Ghanbari, M. Roshani, H.C. Goicoechea, A.R. Jalalvand, Developing an elegant and integrated electrochemical-theoretical approach for detection of DNA damage induced by 4-nonylphenol, Heliyon. 5 (2019) e02755.
[36] M.G. Ghoniem, M.A. Mohamed, G.M.G. Eldin, A. Errachid, Sensitive electrochemical strategy via the construction of
functionalized carbon nanotubes/ionic liquid nanocomposite for the determination of anaesthetic drug cinchocaine, Measurement. 185 (2021) 110071.
[37] N.C. de Lucena, C.M. Miyazaki, F.M. Shimizu, C.J.L. Constantino, M. Ferreira, Layer-by-layer composite film of nickel
phthalocyanine and montmorillonite clay for synergistic effect on electrochemical detection of dopamine, Appl. Surf. Sci., 436 (2018) 957–966.
[38] B. Chakraborty, C. Roychaudhuri, Metal/Metal oxide modified graphene nanostructures for electrical biosensing applications: A review, IEEE Sens. J., 21(16) (2021) 17629 – 17642.
[39] F. Chen, Q. Tang, T. Ma, B. Zhu, L. Wang, C. He, X. Luo, S. Cao, L. Ma, C. Cheng, Structures, properties, and challenges of emerging 2D materials in bioelectronics and biosensors, InfoMat. (2021) e12299.
[40] P. Carneiro, S. Morais, M.C. Pereira, Nanomaterials towards biosensing of Alzheimer’s disease biomarkers, Nanomaterials. 9 (2019) 1663.
[41] S.M. Abu Nayem, S. Shaheen Shah, N. Sultana, M.A. Aziz, A.J. Saleh Ahammad, Electrochemical Sensing Platforms of
Dihydroxybenzene: Part 1–Carbon Nanotubes, Graphene, and their Derivatives, Chem. Rec., 21 (2021) 1039–1072