Ionic Liquid-based Sensors

Document Type : Review Article

Authors

1 School of Chemistry, College of Science, University of Tehran, Tehran, Iran

2 Department of Biotechnology, University of Barcelona, Barcelona 08028, Spain

3 Department of Medical Affairs, Procare Health Iberia, Barcelona 08860, Spain

4 Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey

5 Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, IR 6135743337 Ahvaz, Iran

6 Faculty of Medicine and Health, The University of Sydney, NSW 2145, Australia

Abstract

These days Ionic liquids (ILs) are getting more attention and catching more eyes based on numerous advantages they can offer, including low volatility, excellent thermal and chemical stability, easy handling, remarkable conductivity, and facile design. These astonishing materials are formed via asymmetric cations and anions. They can mainly be found in a liquid state where temperatures are below 100 °C. Therefore, due to their unique features, they can be considered a perfect and desirable candidate in several fields, including electrochemical biosensors and detecting agents; they can play their roles as electrolytes. These unique features prompted us to present a precise and short review of the different fabrication methods of Ionic liquids. Herein, after a laconic description of ILs, a diverse range of fabrication methods was investigated, and a succinct description was given in each approach. Furthermore, where needed, some clear illustrations were used to boost apprehend. Perspectives, remarks, and challenges of different fabrication methods have been given, respectively.

Graphical Abstract

Ionic Liquid-based Sensors

Keywords


 [1] X. Jin, G. Li, T. Xu, L. Su, D. Yan, X. Zhang, Fully integrated flexible biosensor for wearable continuous glucose monitoring, Biosens. Bioelectron., 196 (2022) 113760.
[2] K. Mitsubayashi, K. Toma, K. Iitani, T. Arakawa, Gas-phase Biosensors: A Review, Sens. Actuators B Chem., 367 (2022)
132053.
[3] S. Liu, K. Xiang, C. Wang, Y. Zhang, G.-C. Fan, W. Wang, H. Han, DNA Nanotweezers for Biosensing Applications: Recent
Advances and Future Prospects, ACS Sens. 7 (2022) 3–20.
[4] D. Khorsandi, M. Nodehi, T. Waqar, M. Shabani, B. Kamare, E.N. Zare, S. Ersoy, M. Annabestani, M.F. Çelebi, A. Kafadenk, Manufacturing of microfluidic sensors utilizing 3d printing technologies: A production system, J. Nanomater., 2021 (2021) 5537074.
[5] X. Zheng, C. Ni, W. Xiao, Y. Liang, Y. Li, Ionic liquid grafted polyethersulfone nanofibrous membrane as recyclable adsorbent with simultaneous dye, heavy metal removal and antibacterial property, Chem. Eng. Sci., 428 (2022) 132111.
[6] N. Nikfarjam, M. Ghomi, T. Agarwal, M. Hassanpour, E. Sharifi, D. Khorsandi, M. Ali Khan, F. Rossi, A. Rossetti, E.
Nazarzadeh Zare, Antimicrobial ionic liquid
based materials for biomedical applications, Adv. Funct. Mater., 31 (2021)
2104148.
[7] N. Maleki, A. Safavi, F. Tajabadi, High-performance carbon composite electrode based on an ionic liquid as a binder, Anal. Chem., 78 (2006) 3820–3826.
[8] A.M. Babu, R. Rajeev, D.A. Thadathil, A. Varghese, G. Hegde, Surface modulation and structural engineering of graphitic carbon nitride for electrochemical sensing applications, J. Nanostructure Chem., (2021) 1–43.
[9] P. Butmee, G. Tumcharern, P. Saejueng, D. Stankovic, A. Ortner, J. Jitcharoen, K. Kalcher, A. Samphao, A direct and sensitive electrochemical sensing platform based on ionic liquid functionalized graphene nanoplatelets for the detection of bisphenol A, J. Electroanal. Chem.833 (2019) 370–379.
[10] N. Li, X. Liu, J. Zhu, B. Zhou, J. Jing, A. Wang, R. Xu, Z. Wen, X. Shi, S. Guo, Simple and sensitive detection of acrylamide based on hemoglobin immobilization in carbon ionic liquid paste electrode, Food Control. 109 (2020) 106764.
[11] X. Zheng, J. Wu, X. Wang, Z. Yang, Cellulose-reinforced poly (cyclocarbonate-ether)-based composite polymer electrolyte and facile gel interfacial modification for solid-state lithium-ion batteries, Chem. Eng. J., 446(3) (2022) 137194.
[12] S. Qu, M. Li, C. Zhang, Y. Sun, J. Duan, W. Wang, J. Li, X. Li, Sulfonated poly (ether ether ketone) doped with ammonium ionic liquids and nano-silicon dioxide for polymer electrolyte membranes, Polymers (Basel). 11 (2018) 7.
[13] M.L. Firmansyah, T. Ilmi, R.R. Mukti, M. Goto, Facile fabrication of a phosphonium-based ionic liquid impregnated chitosan adsorbent for the recovery of hexavalent chromium, RSC Adv. 12 (2022) 11207–11215.
[14] O.A. Lambri, B. Weidenfeller, F.G. Bonifacich, L. Mohr-Weidenfeller, F.D. Lambri, J. Xu, G.I. Zelada, F. Endres, Study of
the damping behaviour in samples consisting of iron electro-deposited on copper in an ionic liquid, J. Alloys Compd., 918
(2022) 165462.
[15] Y. Yin, H. Zhu, T. Wu, P. Liao, C. Lan, C. Li, Bistable Silver Electrodeposition
Based Electrochromic Device with Reversible ThreeState Optical Transformation By Using WO3 Nanoislands Modified ITO Electrode, Adv. Mater. Interfaces 9(15) (2022) 2102566.[16] E.N. Zare, M.M. Lakouraj, M. Baghayeri, Electro-magnetic polyfuran/Fe3O4 nanocomposite: Synthesis, characterization,
antioxidant activity and its application as a biosensor, Int. J. Polym. Mater. Polym. Biomater. 64(4) (2015) 175-183.
[17] N. Ferreyra, L. Coche-Guérente, P. Labbé, Construction of layer-by-layer self-assemblies of glucose oxidase and cationic
polyelectrolyte onto glassy carbon electrodes and electrochemical study of the redox-mediated enzymatic activity, Electrochim.
Acta 49 (2004) 477–484.
[18] M. Ferreira, P.A. Fiorito, O.N. Oliveira Jr, S.I.C. de Torresi, Enzyme-mediated amperometric biosensors prepared with the
Layer-by-Layer (LbL) adsorption technique, Biosens. Bioelectron., 19 (2004) 1611–1615.
[19] E.J. Calvo, R. Etchenique, L. Pietrasanta, A. Wolosiuk, C. Danilowicz, Layer-By-Layer Self-Assembly of Glucose Oxidase
and Os (Bpy) 2ClPyCH
2NH- poly (Allylamine) Bioelectrode, Anal Chem. 73 (2001) 1161–1168.
[20] R.M. Iost, F.N. Crespilho, Layer-by-layer self-assembly and electrochemistry: applications in biosensing and bioelectronics,
Biosens. Bioelectron., 31 (2012) 1–10.
[21] J.B. Schlenoff, Retrospective on the future of polyelectrolyte multilayers, Langmuir. 25 (2009) 14007–14010.
[22] G. Rosales, F. Alves, F. Costa, M.M. Pastor, V.C. Fernandes, S. Mattedi, J.S. Boaventura, Development of a bioelectrode
based on catalase enzyme and the novel protic ionic liquid pentaethylenehexammonium acetate (PEHAA), J. Mol. Liq., 280
(2019) 182–190.
[23] C. Salvo-Comino, C. Garcia-Hernandez, C. Garcia-Cabezon, M.L. Rodriguez-Mendez, Promoting laccase sensing activity for
catechol detection using LBL assemblies of chitosan/ionic liquid/phthalocyanine as immobilization surfaces,
Bioelectrochemistry. 132 (2020) 107407.
[24] S. Wu, J. Hao, S. Yang, Y. Sun, Y. Wang, W. Zhang, H. Mao, X.-M. Song, Layer-by-layer self-assembly film of PEI-reduced graphene oxide composites and cholesterol oxidase for ultrasensitive cholesterol biosensing, Sens. Actuators B Chem., 298 (2019) 126856.
[25] D. Zappi, G. Masci, C. Sadun, C. Tortolini, M.L. Antonelli, P. Bollella, Evaluation of new cholinium-amino acids based room temperature ionic liquids (RTILs) as immobilization matrix for electrochemical biosensor development: Proof-of-concept with Trametes Versicolor laccase, Microchem. J., 141 (2018) 346–352.
[26] C. Salvo-Comino, C. García-Hernández, C. García-Cabezón, M.L. Rodríguez-Méndez, Discrimination of milks with a
multisensor system based on layer-by-layer films, Sensors. 18 (2018) 2716.
[27] D.E. Camilo, C.M. Miyazaki, F.M. Shimizu, M. Ferreira, Improving direct immunoassay response by layer-by-layer films of gold nanoparticles–antibody conjugate towards label-free detection, Mater.Sci.Eng.C., 102 (2019) 315–323.
[28] C. Salvo-Comino, C. Garcia-Hernandez, C. Garcia-Cabezon, M.L. Rodriguez-Mendez, Promoting laccase sensing activity for catechol detection using LBL assemblies of chitosan/ionic liquid/phthalocyanine as immobilization surfaces,
Bioelectrochemistry. 132 (2020) 107407.
[29] S. Jahandari, M.A. Taher, H. Karimi-Maleh, A. Khodadadi, E. Faghih-Mirzaei, A powerful DNA-based voltammetric
biosensor modified with Au nanoparticles, for the determination of Temodal; an electrochemical and docking investigation, J. Electroanal. Chem., 840 (2019) 313–318.
[30] B. Jiang, P. Dong, J. Zheng, A novel amperometric biosensor based on covalently attached multilayer assemblies of gold nanoparticles, diazo-resins and acetylcholinesterase for the detection of organophosphorus pesticides, Talanta. 183 (2018) 114–121.
[31] M. Cisternas, H. Bhuyan, M.J. Retamal, N. Casanova-Morales, M. Favre, U.G. Volkmann, P. Saikia, D.E. Diaz-Droguett, S.
Mändl, D. Manova, Study of nitrogen implantation in Ti surface using plasma immersion ion implantation & deposition
technique as biocompatible substrate for artificial membranes, Mater. Sci. Eng. C. 113 (2020) 111002.
[32] A.A. Hasseb, O.R. Shehab, R.M. el Nashar, Application of molecularly imprinted polymers for electrochemical detection of some important biomedical markers and pathogens, Curr. Opin. Electrochem., 31 (2022) 100848.
[33] V. Narwal, R. Deswal, B. Batra, V. Kalra, R. Hooda, M. Sharma, J.S. Rana, Cholesterol biosensors: A review, Steroids. 143
(2019) 6–17.
[34] J. Lipton, G.-M. Weng, J.A. R
ӧhr, H. Wang, A.D. Taylor, Layer-by-layer assembly of two-dimensional materials: meticulous control on the nanoscale, Matter. 2 (2020) 1148–1165.
[35] K. Ghanbari, M. Roshani, H.C. Goicoechea, A.R. Jalalvand, Developing an elegant and integrated electrochemical-theoretical approach for detection of DNA damage induced by 4-nonylphenol, Heliyon. 5 (2019) e02755.
[36] M.G. Ghoniem, M.A. Mohamed, G.M.G. Eldin, A. Errachid, Sensitive electrochemical strategy via the construction of
functionalized carbon nanotubes/ionic liquid nanocomposite for the determination of anaesthetic drug cinchocaine, Measurement. 185 (2021) 110071.
[37] N.C. de Lucena, C.M. Miyazaki, F.M. Shimizu, C.J.L. Constantino, M. Ferreira, Layer-by-layer composite film of nickel
phthalocyanine and montmorillonite clay for synergistic effect on electrochemical detection of dopamine, Appl. Surf. Sci., 436 (2018) 957–966.
[38] B. Chakraborty, C. Roychaudhuri, Metal/Metal oxide modified graphene nanostructures for electrical biosensing applications: A review, IEEE Sens. J., 21(16) (2021) 17629 – 17642.
[39] F. Chen, Q. Tang, T. Ma, B. Zhu, L. Wang, C. He, X. Luo, S. Cao, L. Ma, C. Cheng, Structures, properties, and challenges of emerging 2D materials in bioelectronics and biosensors, InfoMat. (2021) e12299.
[40] P. Carneiro, S. Morais, M.C. Pereira, Nanomaterials towards biosensing of Alzheimer’s disease biomarkers, Nanomaterials. 9 (2019) 1663.
[41] S.M. Abu Nayem, S. Shaheen Shah, N. Sultana, M.A. Aziz, A.J. Saleh Ahammad, Electrochemical Sensing Platforms of
Dihydroxybenzene: Part 1–Carbon Nanotubes, Graphene, and their Derivatives, Chem. Rec., 21 (2021) 1039–1072