[1] Z. Lei, B. Chen, Y.M. Koo, D.R. MacFarlane, Introduction: ionic liquids, Chem. Rev., 117 (2017) 6633-6635.
[2] M.J. Earle, K.R. Seddon, Ionic liquids: Green solvents for the future, Pure Appl. Chem., 72 (2000) 1391-1398.
[3] H. Ning, M.Q. Hou, Q.Q. Mei, Y.H. Liu, D.Z. Yang, B.X. Han, The physicochemical properties of some imidazolium-based
ionic liquids and their binary mixtures, Sci. China Chem., 55 (2012) 1509-15018.
[4] S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, Physical properties of ionic liquids: database and evaluation, J. Phys. Chem. Ref. Data., 35 (2006) 1475-1517.
[5] H. Zhao, Z.C. Liang, F. Li, An improved model for the conductivity of room-temperature ionic liquids based on hole theory, J. Mol. Liq.,149 (2009) 55-59.
[6] D.K. Singh, B. Rathke, J. Kiefer, A. Materny, Molecular structure and interactions in the ionic liquid 1-ethyl-3-
methylimidazolium trifluoromethanesulfonate, J. Phys. Chem. A., 120 (2016) 6274-6286.
[7] H. Zhao, S. Xia, P. Ma, Use of ionic liquids as ‘green’ solvents for extractions, J. Chem. Technol. Biotechnol., 80 (2005) 1089- 1096.
[8] K. Friess, P. Izák, M. Kárászová, M. Pasichnyk, M. Lanč, D. Nikolaeva, P. Luis, J. C. Jansen, A review on ionic liquid gas
separation membranes, Membranes, 11 (2021) 97.
[9] S. Zhang, K. Dokko, M. Watanabe, Porous ionic liquids: synthesis and application, Chemical Science 6 (2015) 3684-3691.
[10] A. Eskandari Nasrabad, N. Mansoori Oghaz, B. Haghighi, Transport properties of Mie (14, 7) fluids: Molecular dynamics
simulation and theory, J. Chem. Phys., 129 (2008) 024507/1- 024507/6.
[11] M.M. Alavianmehr, S.M. Hosseini, B. Haghighi, J. Moghadasi, Surface thermodynamic properties of ionic liquids from new molecular thermodynamic model and ion-contribution equation of state, Chem. Eng. Sci., 122 (2015) 622-629.
[12] A. Mulero, C. Galan, F. Cuadros, Fowler’s approximation for the surface tension and surface energy of Lennard-Jones fluids revisited, J. Phys. Condens. Matter., 15 (2003) 2285-2300.
[13] M.M. Alavianmehr, S.M. Hosseini, J. Moghadasi, Densities of ionic liquids from ion contribution-based equation of state: electrolyte perturbation approach, J. Mol. Liq., 197 (2014) 287-294.
[14] S.M. Hosseini, S. Aparicio, M.M. Alavianmehr, R. Khalifeh, On the volumetric properties of 2-hydroxy ethylammonium
formate ionic liquid under high-pressures: measurement and molecular dynamics, J. Mol. Liq., 266 (2018) 751-761.
[15] M.M. Alavianmehr, R. Ahmadi, N. Aguilar, M. El-Shaikh, S.M. Hosseini, S. Aparicio, Thermophysical and molecular
modelling insights into glycerol + alcohol liquid mixtures, J. Mol. Liq., 297 (2020) 111811.
[16] J.E. Enderby, G.W. Neilson, Structural properties of liquids, Adv. Phys., 29 (1980) 323-365.
[17] O. Borodin, G.D. Smith, Structure and dynamics of N-methyl-N-propylpyrrolidnium bis(trifluoromethanesulfonyl)imide ionic liquid from moleular dyanmic simulations, J. Phys. Chem. B., 110 (2006) 11481-11490.
[18] Th. Koddermann, D. Paschek, R. Ludwig, Molecular dynamic simulation of ionic liquids: a reliable description of structure, thermodynamics and dynamics, Chem. Phys.Chem., 8 (2007) 2464-2470.
[19] P.J Carvalho, M.G. Freire, I. M. Marrucho, A.J. Queimada, J.A.P Coutinho, Surface tensions for the 1-alkyl-3-
methylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquids, J. Chem. Eng. Data 53 (2008) 1346-1350.
[20] N.A. Ghani, N.A. Sairi, M.K. Aroua, Y. Alias, R. Yusoff, Density, surface tension, and viscosity of ionic liquids (1-ethyl-3-
methylimidazolium diethylphosphate and 1, 3-dimethylimidazolium dimethylphosphate) aqueous ternary mixtures with MDEA, J. Chem. Eng. Data 59 (2014) 1737-1746.
[21] X. Wang, Y. Chi, T. Mu, A review on the transport properties of ionic liquids, J. Mol. Liq., 193 (2014) 262-266.
[22] H. Weingärtner, Understanding ionic liquids at the molecular level: facts, problems, and controversies, Angew. Chem., 47 (2008) 654-670.
[23] A.P. Abbott, R.C. Harris, K.S. Ryder, Application of hole theory to define ionic liquids by their transport properties, J. Phys. Chem. B., 111 (2007) 4910-4913.
[24] C.E. Woodward, K.R. Harris, A lattice-hole theory for conductivity in ionic liquid mixtures: application to ionic liquid + water mixtures, Phys. Chem. Chem. Phys., 12 (2010) 1172-1176.
[25] A.P Abbott, Application of hole theory to the viscosity of ionic and molecular liquids, ChemPhysChem 5 (2004) 1242-1246.
[26] K. Ghandi, A review of ionic liquids, their limits and applications, Green Sustain. Chem., 4 (2014) 44-53.
[27] P. Hapiot, C. Lagrost. Electrochemical reactivity in room-temperature ionic liquids, Chem. Rev., 108 (2008) 2238-2264.
[28] M.A. Vorotyntsev, V.A. Zinovyeva, M. Picquet, Diffusional transport in ionic liquids: Stokes–Einstein relation or “sliding
sphere” model? Ferrocene in imidazolium liquids, Electrochim. Acta 55 (2010) 5063-5070.
[29] A.P, Abbott, Model for the conductivity of ionic liquids based on an infinite dilution of holes, Chem.Phys.Chem., 6 (2005) 2502-2505.
[30] J.O'M. Bockris, A.K.N. Reddy, Modern Electrochemistry, Vol.1, Plenum Press: New York, (1970).
[31] T. Koddermann, R. Ludwig, D. Paschek, On the validity of Stokes–Einstein and Stokes–Einstein–Debye relations in ionic liquids and ionic‐liquid mixtures, Chem.Phys.Chem., 9 (2008) 1851-1858.
[32] C. D'Agostino, Hole theory as a prediction tool for Brownian diffusive motion in binary mixtures of liquids. RSC Adv., 7 (2017) 51864-51869.
[33] N. Mansoori Oghaz, B. Haghighi, M.M. Alavianmehr, E. Ghiamati, prediction of solubility parameters based on the explicit expression of statistical thermodynamics, J. Solution. Chem., 42 (2013) 544-554.
[34] S. Yeganegi, V. Sokhanvaran, A. Soltanabadi, Study of thermodynamic properties of imidazolium-based ionic liquids and investigation of the alkyl chain length effect by molecular dynamics simulation, Mol. Simul., 39 (2013) 1070-1078