Assessment of Stokes-Einstein Equation in Combination of the Hole Theory for Estimating the Transport Properties of Ionic Liquid

Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Basic Sciences, University of Neyshabur, 9319774446, Neyshabur, Iran

2 Department of Chemistry, Shiraz University of Technology, Shiraz 71555-313, Iran

Abstract

In this paper, the validity of Stokes-Einstein (SE) equation for estimating the transport properties (e.g. viscosity) of imidazolium-based ionic liquids [Cnmim]Br (n=2,4,5,6) was examined. In order to achieve this goal, the “hole theory” has been utilized for estimating the mean radius of hole. According to the hole theory formalism, the mean radius of hole is related to surface tension. To do so, the Fowler recipe of Kirkwood-Buff (FKB) equation is implemented the calculation of Lennard-Jones's contribution to surface tension of ILs. In the following, assessment of the SE equation is depicted by drawing of  versus . Our test confirms the linearity of diagram and then verifies the validity of the aforementioned approach. The results show that within the imidazolium family, as the cation alkyl chain length increases due to the increased Coulombic forces between the cation and the anion, surface tension decreases.

Graphical Abstract

Assessment of Stokes-Einstein Equation in Combination of the Hole Theory for Estimating the Transport Properties of Ionic Liquid

Keywords


 [1] Z. Lei, B. Chen, Y.M. Koo, D.R. MacFarlane, Introduction: ionic liquids, Chem. Rev., 117 (2017) 6633-6635.
[2] M.J. Earle, K.R. Seddon, Ionic liquids: Green solvents for the future, Pure Appl. Chem., 72 (2000) 1391-1398.

[3] H. Ning, M.Q. Hou, Q.Q. Mei, Y.H. Liu, D.Z. Yang, B.X. Han, The physicochemical properties of some imidazolium-based
ionic liquids and their binary mixtures, Sci. China Chem., 55 (2012) 1509-15018.
[4] S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, Physical properties of ionic liquids: database and evaluation, J. Phys. Chem. Ref. Data., 35 (2006) 1475-1517.
[5] H. Zhao, Z.C. Liang, F. Li, An improved model for the conductivity of room-temperature ionic liquids based on hole theory, J. Mol. Liq.,149 (2009) 55-59.
[6] D.K. Singh, B. Rathke, J. Kiefer, A. Materny, Molecular structure and interactions in the ionic liquid 1-ethyl-3-
methylimidazolium trifluoromethanesulfonate, J. Phys. Chem. A., 120 (2016) 6274-6286.
[7] H. Zhao, S. Xia, P. Ma, Use of ionic liquids as ‘green’ solvents for extractions, J. Chem. Technol. Biotechnol., 80 (2005) 1089- 1096.
[8] K. Friess, P. Izák, M. Kárászová, M. Pasichnyk, M. Lan
č, D. Nikolaeva, P. Luis, J. C. Jansen, A review on ionic liquid gas
separation membranes, Membranes, 11 (2021) 97.
[9] S. Zhang, K. Dokko, M. Watanabe, Porous ionic liquids: synthesis and application, Chemical Science 6 (2015) 3684-3691.
[10] A. Eskandari Nasrabad, N. Mansoori Oghaz, B. Haghighi, Transport properties of Mie (14, 7) fluids: Molecular dynamics
simulation and theory, J. Chem. Phys., 129 (2008) 024507/1- 024507/6.
[11] M.M. Alavianmehr, S.M. Hosseini, B. Haghighi, J. Moghadasi, Surface thermodynamic properties of ionic liquids from new molecular thermodynamic model and ion-contribution equation of state, Chem. Eng. Sci., 122 (2015) 622-629.
[12] A. Mulero, C. Galan, F. Cuadros, Fowler’s approximation for the surface tension and surface energy of Lennard-Jones fluids revisited, J. Phys. Condens. Matter., 15 (2003) 2285-2300.
[13] M.M. Alavianmehr, S.M. Hosseini, J. Moghadasi, Densities of ionic liquids from ion contribution-based equation of state: electrolyte perturbation approach, J. Mol. Liq., 197 (2014) 287-294.
[14] S.M. Hosseini, S. Aparicio, M.M. Alavianmehr, R. Khalifeh, On the volumetric properties of 2-hydroxy ethylammonium
formate ionic liquid under high-pressures: measurement and molecular dynamics, J. Mol. Liq., 266 (2018) 751-761.
[15] M.M. Alavianmehr, R. Ahmadi, N. Aguilar, M. El-Shaikh, S.M. Hosseini, S. Aparicio, Thermophysical and molecular
modelling insights into glycerol + alcohol liquid mixtures, J. Mol. Liq., 297 (2020) 111811.
[16] J.E. Enderby, G.W. Neilson, Structural properties of liquids, Adv. Phys., 29 (1980) 323-365.
[17] O. Borodin, G.D. Smith, Structure and dynamics of N-methyl-N-propylpyrrolidnium bis(trifluoromethanesulfonyl)imide ionic liquid from moleular dyanmic simulations, J. Phys. Chem. B., 110 (2006) 11481-11490.
[18] Th. Koddermann, D. Paschek, R. Ludwig, Molecular dynamic simulation of ionic liquids: a reliable description of structure, thermodynamics and dynamics, Chem. Phys.Chem., 8 (2007) 2464-2470.
[19] P.J Carvalho, M.G. Freire, I. M. Marrucho, A.J. Queimada, J.A.P Coutinho, Surface tensions for the 1-alkyl-3-
methylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquids, J. Chem. Eng. Data 53 (2008) 1346-1350.
[20] N.A. Ghani, N.A. Sairi, M.K. Aroua, Y. Alias, R. Yusoff, Density, surface tension, and viscosity of ionic liquids (1-ethyl-3-
methylimidazolium diethylphosphate and 1, 3-dimethylimidazolium dimethylphosphate) aqueous ternary mixtures with MDEA, J. Chem. Eng. Data 59 (2014) 1737-1746.
[21] X. Wang, Y. Chi, T. Mu, A review on the transport properties of ionic liquids, J. Mol. Liq., 193 (2014) 262-266.
[22] H. Weingärtner, Understanding ionic liquids at the molecular level: facts, problems, and controversies, Angew. Chem., 47 (2008) 654-670.
[23] A.P. Abbott, R.C. Harris, K.S. Ryder, Application of hole theory to define ionic liquids by their transport properties, J. Phys. Chem. B., 111 (2007) 4910-4913.
[24] C.E. Woodward, K.R. Harris, A lattice-hole theory for conductivity in ionic liquid mixtures: application to ionic liquid + water mixtures, Phys. Chem. Chem. Phys., 12 (2010) 1172-1176.
[25] A.P Abbott, Application of hole theory to the viscosity of ionic and molecular liquids, ChemPhysChem 5 (2004) 1242-1246.
[26] K. Ghandi, A review of ionic liquids, their limits and applications, Green Sustain. Chem., 4 (2014) 44-53.
[27] P. Hapiot, C. Lagrost. Electrochemical reactivity in room-temperature ionic liquids, Chem. Rev., 108 (2008) 2238-2264.
[28] M.A. Vorotyntsev, V.A. Zinovyeva, M. Picquet, Diffusional transport in ionic liquids: Stokes–Einstein relation or “sliding
sphere” model? Ferrocene in imidazolium liquids, Electrochim. Acta 55 (2010) 5063-5070.
[29] A.P, Abbott, Model for the conductivity of ionic liquids based on an infinite dilution of holes, Chem.Phys.Chem., 6 (2005) 2502-2505.
[30] J.O'M. Bockris, A.K.N. Reddy, Modern Electrochemistry, Vol.1, Plenum Press: New York, (1970).
[31] T. Koddermann, R. Ludwig, D. Paschek, On the validity of Stokes–Einstein and Stokes–Einstein–Debye relations in ionic liquids and ionic
liquid mixtures, Chem.Phys.Chem., 9 (2008) 1851-1858.
[32] C. D'Agostino, Hole theory as a prediction tool for Brownian diffusive motion in binary mixtures of liquids. RSC Adv., 7 (2017) 51864-51869.
[33] N. Mansoori Oghaz, B. Haghighi, M.M. Alavianmehr, E. Ghiamati, prediction of solubility parameters based on the explicit expression of statistical thermodynamics, J. Solution. Chem., 42 (2013) 544-554.
[34] S. Yeganegi, V. Sokhanvaran, A. Soltanabadi, Study of thermodynamic properties of imidazolium-based ionic liquids and investigation of the alkyl chain length effect by molecular dynamics simulation, Mol. Simul., 39 (2013) 1070-1078