[1] E.L. Smith, A.P. Abbott, K.S. Ryder, Deep Eutectic Solvents (DESs) and Their Applications, Chem. Rev. 114 (2014) 11060- 11082.
[2] K.G. Singh, G. Singh, T. Singh Kang, Aggregation Behavior of Sodium Dioctyl Sulfosuccinate in Deep Eutectic Solvents and Their Mixtures with Water: An Account of Solvent’s Polarity, Cohesiveness, and Solvent Structure, ACS Omega 3 (2018) 13387-13398.
[3] Y. Marcus, Deep Eutectic Solvents, Springer Nature Switzerland AG, 2019.
[4] A.E. Delorme, J.-M. Andanson, V. Verney, Improving Laccase Thermostability with Aqueous Natural Deep Eutectic Solvents, Int. J. Biol. Macromol. 163 (2020) 919-926.
[5] M. Aryafard, M. Abbasi, D. Řeha, A.R. Harifi-Mood, B. Minofar, Experimental and Theoretical Investigation of
Solvatochromic Properties and Ion Solvation Structure in DESs of Reline, Glyceline, Ethaline and Their Mixtures with PEG
400, J. Mol. Liq. 284 (2019) 59-67.
[6] Y. Wang, C. Ma, C. Liu, X. Lu, X. Feng, X. Ji, Thermodynamic Study of Choline Chloride-Based Deep Eutectic Solvents with Water and Methanol, J. Chem. Eng. Data 65 (2020) 2446-2457.
[7] D. Kundu, P.S. Rao, T. Banerjee, First-Principles Prediction of Kamlet-Taft Solvatochromic Parameters of Deep Eutectic
Solvent Using the COSMO-RS Model, Ind. Eng. Chem. Res. 59 (2020) 11329-11339.
[8] F. Pasham, M. Jabbari, A. Farajtabar, Solvatochromic Measurement of KAT Parameters and Modeling Preferential Solvation in Green Potential Binary Mixtures of N‑Formylmorpholine with Water, Alcohols, and Ethyl Acetate, J. Chem. Eng. Data 65 (2020) 5458-5466.
[9] A. Farajtabar, A. Sadeghi, M. Faeli, M. Faraji, Preferential Solvation Analysis of Moxidectin in Water/Alcohol Mixtures, Mater. Chem. Horiz., 1 (2022), In press (DOI: 10.22128/mch.2022.571.1014).
[10] K. Herodes, I. Leito, I. Koppel, M. Rosés, Solute–Solvent and Solvent–Solvent Interactions in Binary Solvent Mixtures. Part 8. The ET(30) Polarity of Binary Mixtures of Formamides with Hydroxylic Solvents, J. Phys. Org. Chem. 12 (1999) 109-115.
[11] N. Nunes, R. Elvas-Leitão, F. Martins, UV–Vis Spectroscopic Study of Preferential Solvation and Intermolecular Interactions in Methanol/1-Propanol/Acetonitrile by means of Solvatochromic Probes, Spectrochim. Acta, Part A 124 (2014) 470-479. Materials Chemistry Horizons
[12] M. Sarijloo, M. Jabbari, A. Farajtabar, Solvatochromism in Some Cosolvent Mixtures of Sulfolane and Aliphatic Alcohols: a Tool to Predict Preferential Solvation, Can. J. Chem. 98 (2019) 134-144.
[13] M. Sarijloo, M. Jabbari, A. Farajtabar, Spectral Study of Intermolecular Interactions in Some Sulfolane/Alcoholic Binary
Mixtures Using Solvatochromic Measurements, J. Solution Chem. 48 (2019) 905-919.
[14] A. Duereh, Y. Sato, R.L. Smith, H. Inomata, Analysis of the Cybotactic Region of Two Renewable Lactone–Water MixedSolvent Systems that Exhibit Synergistic Kamlet–Taft Basicity, J. Phys. Chem. B 120 (2016) 4467-4481.
[15] C. Reichardt, Solvatochromic Dyes as Solvent Polarity Indicators, Chem. Rev. 94 (1994) 2319-2358.
[16] R.W. Taft, M.J. Kamlet, The solvatochromic comparison method. 2. The .Alpha.-Scale of Solvent Hydrogen-Bond Donor (HBD) Acidities, J. Am. Chem. Soc. 98 (1976) 2886-2894.
[17] M.J. Kamlet, R.W. Taft, The Solvatochromic Comparison Method. I. The .Beta.-Scale of Solvent Hydrogen-Bond Acceptor (HBA) basicities, J. Am. Chem. Soc. 98 (1976) 377-383.
[18] C. Laurence, P. Nicolet, M.T. Dalati, J.-L.M. Abboud, R. Notario, The Empirical Treatment of Solvent-Solute Interactions: 15 Years of .pi.*, J. Phys. Chem. 98 (1994) 5807-5816.
[19] N.D. Khupse, A. Kumar, Delineating Solute-Solvent Interactions in Binary Mixtures of Ionic Liquids in Molecular Solvents and Preferential Solvation Approach, J. Phys. Chem. B 115 (2011) 711-718.
[20] L.A. Giusti, V.G. Marini, V.G. Machado, Solvatochromic Behavior of 1-(p-dimethylaminophenyl)-2-nitroethylene in 24
Binary Solvent Mixtures Composed of Amides and Hydroxylic Solvents, J. Mol. Liq. 150 (2009) 9-15.
[21] Y. Marcus, The effectiveness of solvents as hydrogen bond donors, J. Solution Chem. 20 (1991) 929-944.