Approaches of Membrane Modification for Water Treatment

Document Type : Review Article

Authors

1 School of Chemistry, College of Science, University of Tehran, Tehran, Iran

2 Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy

Abstract

The environment and how to protect it, is a crucial subject in the twenty-first century. Membrane field is one of the most reliable and cheapest methods, which is catching eyes these days. Although membranes are efficient and easy to handle, the vulnerability against fouling agents and poor stability are drawbacks. Fortunately, a diverse range of methods developed over the past few decades for membrane modification. Each modification method can offer some benefits that can enhance the membrane's overall performance. On the other hand, almost all of them also have some drawbacks. Therefore, knowing the aspect of each modification method can lead researchers to choose the best one based on the desired application. Generally speaking, membrane modification can culminate in better water permeation, higher rejection rate, more thermal and mechanical stability, higher surface hydrophilicity, and more extended durability. Therefore, a study about membrane modification methods and their advantages and disadvantageous were needed. Herein, a short but thorough review is brought to indicate how membranes could modify with different methods, and their fortes and drawbacks are briefly discussed. In addition, new studies were brought in to elucidate how these methods are gaining real applications.

Graphical Abstract

Approaches of Membrane Modification for Water Treatment

Keywords


 [1] Y. Liu, Q. Zhu, M. Tayyab, L. Zhou, J. Lei, J. Zhang, Single-Atom Pt Loaded Zinc Vacancies ZnO–ZnS Induced Type-V
Electron Transport for Efficiency Photocatalytic H2 Evolution, Sol. RRL. 5 (2021) 2100536.
[2] M. Tayyab, Y. Liu, S. Min, R. Muhammad Irfan, Q. Zhu, L. Zhou, J. Lei, J. Zhang, Simultaneous hydrogen production with
the selective oxidation of benzyl alcohol to benzaldehyde by a noble-metal-free photocatalyst VC/CdS nanowires, Chinese J. Catal. 43 (2022) 1165–1175.
[3] P. Osei Lartey, D. Li, J. Li, W. Qin, K. Guo, J. Ma, Fluoropolymer-based hybrid superhydrophobic nanocomposite coating
with antifouling and self-cleaning properties for efficient oil/water separation, Colloids Surfaces A Physicochem. Eng. Asp.
650 (2022) 129504.
[4] A. Marandi, N. Koukabi, Fe3O4@TEA core-shell nanoparticles decorated palladium: A highly active and magnetically
separable nanocatalyst for the Heck coupling reaction, Colloids Surfaces A Physicochem. Eng. Asp. 621 (2021) 126597.
[5] G. Liu, M. Feng, M. Tayyab, J. Gong, M. Zhang, M. Yang, K. Lin, Direct and efficient reduction of perfluorooctanoic acid
using bimetallic catalyst supported on carbon, J. Hazard. Mater. 412 (2021) 125224.
[6] A. Marandi, E. Nasiri, N. Koukabi, F. Seidi, The Fe3O4@apple seed starch core-shell structure decorated In(III): A green
biocatalyst for the one-pot multicomponent synthesis of pyrazole-fused isocoumarins derivatives under solvent-free conditions,
Int. J. Biol. Macromol. 190 (2021) 61–71.
[7] A. Marandi, E. Kolvari, M. Gilandoust, M.A. Zolfigol, Immobilization of –OSO3H on activated carbon powder and its use as a heterogeneous catalyst in the synthesis of phthalazine and quinoline derivatives, Diam. Relat. Mater. 124 (2022) 108908.
[8] R. Ghanbari, P.K. Kahriz, H. Mahdavi, Metal-organic framework/H2O2-exfoliated g-C3N4/poly(vinylidene fluoride)
composite nanofiltration membranes, Mater. Chem. Phys. (2022) 126751.
[9] C. Wang, Y. Chen, X. Hu, P. Guo, Scalable dual-layer PVDF loose nanofiltration hollow fiber membranes for treating textile wastewater, J. Water Process Eng. 46 (2022) 102579.
[10] S. Seraj, T. Mohammadi, M.A. Tofighy, Graphene-based membranes for membrane distillation applications: A review, J. Environ. Chem. Eng. 10 (2022) 107974.
[11] M. Mondal, H.D. Raval, Removal of arsenic from water using a novel polyamide composite hollow fiber membrane by
interfacial polymerization on lumen side, J. Environ. Chem. Eng. 10 (2022) 107843.
[12] T. Zhang, X. Guo, B. Solomon, M. Sharifpur, L.-Z. Zhang, A hydrophobic-hydrophilic MXene/PVDF composite hollow fiber membrane with enhanced antifouling properties for seawater desalination, J. Memb. Sci. 644 (2022) 120146.
[13] D. Zou, C. Hu, E. Drioli, Z. Zhong, Engineering green and high-flux poly(vinylidene fluoride) membranes for membrane distillation via a facile co-casting process, J. Memb. Sci. 655 (2022) 120577.
[14] S. Han, Z. Mai, Z. Wang, X. Zhang, J. Zhu, J. Shen, J. Wang, Y. Wang, Y. Zhang, Covalent Organic Framework-Mediated
Thin-Film Composite Polyamide Membranes toward Precise Ion Sieving, ACS Appl. Mater. Interfaces. 14 (2022) 3427–3436.
[15] Y. Qin, H. Liu, Y. Sun, Q. Huang, W. Li, K. Chen, W. Shu, C. Xiao, Preparation of the interfacial enhanced PA/APVC
nanofiltration membrane based on the in-situ amination of substrate membrane, Sep. Purif. Technol. 280 (2022) 119964.
[16] V. Bhadja, S. Chakraborty, S. Pal, R. Mondal, B.S. Makwana, U. Chatterjee, A sustainable and efficient process for the
preparation of polyethylene–polystyrene interpolymer based anion exchange membranes by in situ chloromethylation for
electrodialytic applications, Sustain. Energy Fuels. 1 (2017) 583–592.
[17] P. Khomein, W. Ketelaars, T. Lap, G. Liu, Sulfonated aromatic polymer as a future proton exchange membrane: A review of sulfonation and crosslinking methods, Renew. Sustain. Energy Rev. 137 (2021) 110471.
[18] J. Yin, G. Zhu, B. Deng, Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification, Desalination. 379 (2016) 93–101.
[19] Y. Kang, M. Obaid, J. Jang, I.S. Kim, Sulfonated graphene oxide incorporated thin film nanocomposite nanofiltration
membrane to enhance permeation and antifouling properties, Desalination. 470 (2019) 114125.
[20] S. Jiang, H. Zheng, X. Sun, M. Zhu, Y. Zhou, D. Wang, D. Zhang, L. Zhang, New and highly efficient Ultra-thin gC3N4/FeOCl nanocomposites as photo-Fenton catalysts for pollutants degradation and antibacterial effect under visible light, Chemosphere. 290 (2022) 133324.
[21] X. Hong, Z. Lu, Y. Zhao, L. Lyu, L. Ding, Y. Wei, H. Wang, Fast fabrication of freestanding MXene-ZIF-8 dual-layered
membranes for H2/CO2 separation, J. Memb. Sci. 642 (2022) 119982.
[22] L. Xu, T. Yang, M. Li, J. Chang, J. Xu, Thin-film nanocomposite membrane doped with carboxylated covalent organic
frameworks for efficient forward osmosis desalination, J. Memb. Sci. 610 (2020) 118111.
[23] P. Sun, L. Zhang, S. Tao, Preparation of hybrid chitosan membranes by selective laser sintering for adsorption and catalysis, Mater. Des. 173 (2019) 107780. doi:https://doi.org/10.1016/j.matdes.2019.107780.
[24] M. Khajavian, E. Salehi, V. Vatanpour, Nanofiltration of dye solution using chitosan/poly(vinyl alcohol)/ZIF-8 thin film
composite adsorptive membranes with PVDF membrane beneath as support, Carbohydr. Polym. 247 (2020) 116693.
[25] B.T. Julius, T.J. McCubbin, R.A. Mertz, N. Baert, J. Knoblauch, D.G. Grant, K. Conner, S. Bihmidine, P. Chomet, R. Wagner, J. Woessner, K. Grote, J. Peevers, T.L. Slewinski, M.C. McCann, N.C. Carpita, M. Knoblauch, D.M. Braun, Maize Brittle Stalk2-Like3 , encoding a COBRA protein, functions in cell wall formation and carbohydrate partitioning, Plant Cell. 33 (2021) 3348–3366.
[26] Z. Dai, H. Aboukeila, L. Ansaloni, J. Deng, M. Giacinti Baschetti, L. Deng, Nafion/PEG hybrid membrane for CO2 separation: Effect of PEG on membrane micro-structure and performance, Sep. Purif. Technol. 214 (2019) 67–77.
[27] L. Xiu, W. Pei, S. Zhou, Z. Wang, P. Yang, J. Zhao, J. Qiu, Multilevel Hollow MXene Tailored Low-Pt Catalyst for Efficient
Hydrogen Evolution in Full-pH Range and Seawater, Adv. Funct. Mater. 30 (2020) 1910028.
[28] G. He, M. Li, X. Li, Q. Wang, Z. Xie, Y. Xue, K. Wang, J. Yu, G. Sun, H. Yu, X. Qiu, Isoporous membrane from PS-bPAA/MWCNT-Ag composite with high photothermal conversion efficiency, J. Memb. Sci. 661 (2022) 120950.
[29] H. Mahdavi, N. Zeinalipour, M.A. Kerachian, A.A. Heidari, Preparation of high-performance PVDF mixed matrix membranes incorporated with PVDF-g-PMMA copolymer and GO@ SiO2 nanoparticles for dye rejection applications, J. Water Process Eng. 46 (2022) 102560.
[30] Z. Shu, T. Chen, W. Cai, W. Yu, Z. Yi, C. Gao, Improving the permselectivity of asymmetric isoporous membranes by
blending the micro-sized metal-organic frameworks(MOFs) crystals with block copolymer, J. Memb. Sci. 661 (2022) 120895.
[31] H.J. Min, Y.J. Kim, M. Kang, C.-H. Seo, J.-H. Kim, J.H. Kim, Crystalline elastomeric block copolymer/ionic liquid
membranes with enhanced mechanical strength and gas separation properties, J. Memb. Sci. 660 (2022) 120837.
[32] Q. Wu, Y. Sun, W. Wang, S. Tian, M. Ouyang, K. Chen, D. Shi, Y. Zhang, H. Li, Z. Zhao, Block copolymer pervaporation
membranes with microphase separated structures for ethyl acetate separation, Sep. Purif. Technol. 298 (2022) 121654.
[33] Y. Suzuki, T. Nohara, K. Tabata, R. Yamakado, R. Shimada, H. Nakazaki, T. Saito, T. Makino, T. Arita, A. Masuhara, Protonconductive polymeric ionic liquids block copolymer of poly(vinylphosphonic acid)/1-propylimidazole-b-polystyrene for polymer electrolyte membrane fuel cells, Jpn. J. Appl. Phys. 61 (2022) SD1034.
[34] N. Nasrollahi, L. Ghalamchi, V. Vatanpour, A. Khataee, M. Yousefpoor, Novel polymeric additives in the preparation and
modification of polymeric membranes: A comprehensive review, J. Ind. Eng. Chem. 109 (2022) 100–124.
[35] C. Ye, A. Wang, C. Breakwell, R. Tan, C. Grazia Bezzu, E. Hunter-Sellars, D.R. Williams, N.P. Brandon, P.A.A. Klusener,
A.R. Kucernak, K.E. Jelfs, N.B. McKeown, Q. Song, Development of efficient aqueous organic redox flow batteries using ionsieving sulfonated polymer membranes, Nat. Commun. 13 (2022) 3184.
[36] K.H. Lasisi, T.F. Ajibade, K. Zhang, 3, 3
-diaminodiphenyl sulfone engagement in polysulfonamide-based acid-resistant
nanofiltration membrane fabrication for efficient separation performance and heavy metal ions removal from wastewater, J. Memb. Sci. 661 (2022) 120909.
[37] Y. Yu, Q. Han, H. Lin, S. Zhang, Q. Yang, F. Liu, Fine regulation on hour-glass like spongy structure of polyphenylsulfone (PPSU)/sulfonated polysulfone (SPSf) microfiltration membranes via a vapor-liquid induced phase separation (V-LIPS)
technique, J. Memb. Sci. 660 (2022) 120872.
[38] Z. Rao, M. Lan, D. Zhu, L. Jiang, Z. Wang, H. Wan, B. Tang, H. Liu, Synergistically promoted proton conduction of proton exchange membrane by phosphoric acid functionalized carbon nanotubes and graphene oxide, J. Memb. Sci. 659 (2022) 120810.
[39] V. Vatanpour, S.S. Mousavi Khadem, A. Dehqan, S. Paziresh, M. Ganjali, M. Mehrpooya, E. Pourbasheer, A. Badiei, A.
Esmaeili, I. Koyuncu, G. Naderi, N. Rabiee, O. Abida, S. Habibzadeh, S.M.R. Paran, Application of g-C3N4/ZnO
nanocomposites for fabrication of anti-fouling polymer membranes with dye and protein rejection superiority, J. Memb. Sci. 660 (2022) 120893.
[40] V. Vatanpour, M. A
ğtaş, A.M. Abdelrahman, M.E. Erşahin, H. Ozgun, I. Koyuncu, Nanomaterials in membrane bioreactors: Recent progresses, challenges, and potentials, Chemosphere. 302 (2022) 134930.
[41] Z. Wang, Z. Chen, Z. Zheng, H. Liu, L. Zhu, M. Yang, Y. Chen, Nanocellulose-based membranes for highly efficient
molecular separation, Chem. Eng. J. 451 (2023) 138711. doi:https://doi.org/10.1016/j.cej.2022.138711.
[42] S. Dey, A. Dorey, L. Abraham, Y. Xing, I. Zhang, F. Zhang, S. Howorka, H. Yan, A reversibly gated protein-transporting
membrane channel made of DNA, Nat. Commun. 13 (2022) 2271.
[43] B. Keskin, S. Mehrabani, S. Arefi-Oskoui, V. Vatanpour, O. Teber, A. Khataee, Y. Orooji, I. Koyuncu, Development of
Ti2AlN MAX phase/cellulose acetate nanocomposite membrane for removal of dye, protein and lead ions, Carbohydr. Polym. 296 (2022) 119913.
[44] D. Khorsandi, A. Zarepour, I. Rezazadeh, M. Ghomi, R. Ghanbari, A. Zarrabi, F.T. Esfahani, N. Mojahed, M. Baghayeri, E.N. Zare, P. Makvandi, Ionic liquid-based materials for electrochemical biosensing, Clin. Transl. Discov. 2 (2022) e127.
[45] C. Tian, F. Wu, W. Jiao, X. Liu, X. Yin, Y. Si, J. Yu, B. Ding, Antibacterial and antiviral N-halamine nanofibrous membranes with nanonet structure for bioprotective applications, Compos. Commun. 24 (2021) 100668.
[46] S. Xiang, X. Tang, S. Rajabzadeh, P. Zhang, Z. Cui, H. Matsuyama, Fabrication of PVDF/EVOH blend hollow fiber
membranes with hydrophilic property via thermally induced phase process, Sep. Purif. Technol. 301 (2022) 122031.
[47] S. Xue, C. Li, J. Li, H. Zhu, Y. Guo, A catechol-based biomimetic strategy combined with surface mineralization to enhance hydrophilicity and anti-fouling property of PTFE flat membrane, J. Memb. Sci. 524 (2016).
[48] S.-C. Shi, Y.-W. Chang, Biofriendly chitosan-based high-efficiency dialysis membrane, Prog. Org. Coatings. 170 (2022)
106981.
[49] Z. Wang, S. Bin Kang, E. Yang, S.W. Won, Preparation of adsorptive polyethyleneimine/polyvinyl chloride electrospun
nanofiber membrane: Characterization and application, J. Environ. Manage. 316 (2022) 115155.
[50] M.-J. Tang, M.-L. Liu, L. Li, G.-J. Su, X.-Y. Yan, C. Ye, S.-P. Sun, W. Xing, Solvation-amination-synergy that neutralizes
interfacially polymerized membranes for ultrahigh selective nanofiltration, AIChE J. 68 (2022) e17602.
[51] S. Amiri, A. Asghari, A.R. Harifi-Mood, M. Rajabi, T. He, V. Vatanpour, Polyvinyl alcohol and sodium alginate hydrogel
coating with different crosslinking procedures on a PSf support for fabricating high-flux NF membranes, Chemosphere. 308 (2022) 136323.
[52] S. Almaie, V. Vatanpour, M.H. Rasoulifard, M.S. Seyed Dorraji, Novel negatively-charged amphiphilic copolymers of PVDFg-PAMPS and PVDF-g-PAA to improve permeability and fouling resistance of PVDF UF membrane, React. Funct. Polym. 179 (2022) 105386.
[53] Y. Lu, Y. Zhu, H. Ma, F. Chen, C. Gao, L. Xue, Wetting-induced superlyophobic polyacrylonitrile membranes: From
reversible wettability to switchable on-demand emulsion separation, Sep. Purif. Technol. 297 (2022) 121438.
[54] P. Zhang, S. Rajabzadeh, T. Istirokhatun, Q. Shen, Y. Jia, X. Yao, A. Venault, Y. Chang, H. Matsuyama, A novel method to immobilize zwitterionic copolymers onto PVDF hollow fiber membrane surface to obtain antifouling membranes, J. Memb. Sci. 656 (2022) 120592.
[55] D. Kang, H. Shao, G. Chen, X. Dong, S. Qin, Fabrication of highly permeable PVDF loose nanofiltration composite
membranes for the effective separation of dye/salt mixtures, J. Memb. Sci. 621 (2021) 118951.
[56] H. Salehi, A. Shakeri, H. Mahdavi, R.G.H. Lammertink, Improved performance of thin-film composite forward osmosis
membrane with click modified polysulfone substrate, Desalination. 496 (2020) 114731.
[57] Q. Wan, R. Jiang, L. Mao, D. Xu, G. Zeng, Y. Shi, F. Deng, M. Liu, X. Zhang, Y. Wei, A powerful “one-pot” tool for
fabrication of AIE-active luminescent organic nanoparticles through the combination of RAFT polymerization and
multicomponent reactions, Mater. Chem. Front. 1 (2017) 1051–1058.
[58] C.L. Yang, Z.H. Li, W.J. Li, H.Y. Liu, Q.Z. Xiao, G.T. Lei, Y.H. Ding, Batwing-like polymer membrane consisting of PMMAgrafted electrospun PVdF–SiO2 nanocomposite fibers for lithium-ion batteries, J. Memb. Sci. 495 (2015) 341–350.
[59] A. Venault, C.-Y. Chang, T.-C. Tsai, H.-Y. Chang, D. Bouyer, K.-R. Lee, Y. Chang, Surface zwitterionization of PVDF VIPS
membranes for oil and water separation, J. Memb. Sci. 563 (2018) 54–64. doi:https://doi.org/10.1016/j.memsci.2018.05.049.
[60] Q. Chen, Y. Zhao, Q. Xie, C. Liang, Z. Zong, Polyethyleneimine grafted starch nanocrystals as a novel biosorbent for efficient removal of methyl blue dye, Carbohydr. Polym. 273 (2021) 118579.
[61] S. Bakhodaye Dehghanpour, F. Parvizian, V. Vatanpour, The role of CuO/TS-1, ZnO/TS-1, and Fe2O3/TS-1 on the
desalination performance and antifouling properties of thin-film nanocomposite reverse osmosis membranes, Sep. Purif.
Technol. 302 (2022) 122083.
[62] S.A. Naziri Mehrabani, V. Vatanpour, I. Koyuncu, Green solvents in polymeric membrane fabrication: A review, Sep. Purif. Technol. 298 (2022) 121691.
[63] L. Martínez-Izquierdo, A. Perea-Cachero, M. Malankowska, C. Téllez, J. Coronas, A comparative study between single gas and mixed gas permeation of polyether-block-amide type copolymer membranes, J. Environ. Chem. Eng. 10 (2022) 108324.
[64] K.S. Goh, Y. Chen, D.Y.F. Ng, J.W. Chew, R. Wang, Organic solvent forward osmosis membranes for pharmaceutical
concentration, J. Memb. Sci. 642 (2022) 119965.
[65] W. Zhang, Z. Li, Y. Xu, H. Lin, L. Shen, R. Li, M. Zhang, In situ conversion of ZnO into zeolitic imidazolate framework-8
in polyamide layers for well-structured high-permeance thin-film nanocomposite nanofiltration membranes, J. Mater. Chem. A. 9 (2021) 7684–7691.
[66] A. Donnadio, R. Narducci, M. Casciola, F. Marmottini, R. D’Amato, M. Jazestani, H. Chiniforoshan, F. Costantino, Mixed
Membrane Matrices Based on Nafion/UiO-66/SO3H-UiO-66 Nano-MOFs: Revealing the Effect of Crystal Size, Sulfonation,
and Filler Loading on the Mechanical and Conductivity Properties, ACS Appl. Mater. Interfaces. 9 (2017) 42239–42246.
[67] Y. Sun, T. Sun, J. Pang, N. Cao, C. Yue, J. Wang, X. Han, Z. Jiang, Poly(aryl ether ketone) membrane with controllable
degree of sulfonation for organic solvent nanofiltration, Sep. Purif. Technol. 273 (2021) 118956.
[68] Y. Zhao, X. Li, J. Shen, C. Gao, B. Van der Bruggen, The potential of Kevlar aramid nanofiber composite membranes, J.
Mater. Chem. A. 8 (2020) 7548–7568.
[69] H. Zhang, Z. Wang, Y. Shen, P. Mu, Q. Wang, J. Li, Ultrathin 2D Ti3C2Tx MXene membrane for effective separation of oilin-water emulsions in acidic, alkaline, and salty environment, J. Colloid Interface Sci. 561 (2020) 861–869.
[70] Y. Wei, P. Zhang, R.A. Soomro, Q. Zhu, B. Xu, Advances in the Synthesis of 2D MXenes, Adv. Mater. 33 (2021) 2103148.
[71] V. Vatanpour, S. Paziresh, A melamine-based covalent organic framework nanomaterial as a nanofiller in polyethersulfone mixed matrix membranes to improve separation and antifouling performance, J. Appl. Polym. Sci. 139 (2022) 51428.
[72] H. Mahdavi, M. Karami, A.A. Heidari, P.K. Kahriz, Preparation of mixed matrix membranes made up of polysulfone and
MIL-53(Al) nanoparticles as promising membranes for separation of aqueous dye solutions, Sep. Purif. Technol. 274 (2021) 119033.
[73] X. Wang, Q. Lyu, T. Tong, K. Sun, L.-C. Lin, C. Tang, F. Yang, M. Guiver, X. Quan, Y. Dong, Robust ultrathin nanoporous
MOF membrane with intra-crystalline defects for fast water transport, Nat. Commun. 13 (2022). doi:10.1038/s41467-021-
27873-6.
[74] H. Shi, L. Xue, A. Gao, Y. Fu, Q. Zhou, L. Zhu, Fouling-resistant and adhesion-resistant surface modification of dual layer PVDF hollow fiber membrane by dopamine and quaternary polyethyleneimine, J. Memb. Sci. 498 (2016) 39–47.
[75] L.Y. Susan, S. Ismail, B.S. Ooi, H. Mustapa, Surface morphology of pvdf membrane and its fouling phenomenon by crude oil emulsion, J. Water Process Eng. 15 (2017) 55–61.
[76] H. Mahdavi, R. Ghanbari, Preparation of loose nanofiltration PVDF membrane coated with dopamine and EPPTMS layers based on mussel inspired technique and ring-opening reaction via a facile VIPS-NIGPS method for dye separation applications, J. Ind. Eng. Chem. (2022). doi:https://doi.org/10.1016/j.jiec.2022.04.029.
[77] M. Mousavi, M. Soleimani, M. Hamzehloo, A. Badiei, J.B. Ghasemi, Photocatalytic degradation of different pollutants by the novel gCN-NS/Black-TiO2 heterojunction photocatalyst under visible light: Introducing a photodegradation model and optimization by response surface methodology (RSM), Mater. Chem. Phys. 258 (2021) 123912.
[78] S. Geißler, A. Barrantes, P. Tengvall, P.B. Messersmith, H. Tiainen, Deposition Kinetics of Bioinspired Phenolic Coatings on Titanium Surfaces, Langmuir. 32 (2016) 8050–8060.
[79] S.-J. Xu, Q. Shen, L.-H. Luo, Y.-H. Tong, Y.-Z. Wu, Z.-L. Xu, H.-Z. Zhang, Surfactants attached thin film composite (TFC)
nanofiltration (NF) membrane via intermolecular interaction for heavy metals removal, J. Memb. Sci. 642 (2022) 119930.
[80] A.A. Heidari, H. Mahdavi, P. Khodaei kahriz, Thin film composite solvent resistant nanofiltration membrane via interfacial polymerization on an engineered polyethylene membrane support coated with polydopamine, J. Memb. Sci. 634 (2021) 119406.
[81] A.A. Heidari, H. Mahdavi, Polyethylene Coated with MnO2 Nanoparticles as Thin Film Composite Membranes for Organic Solvent Nanofiltration, ACS Appl. Nano Mater. 4 (2021) 2768–2782.
[82] A. Bayrami, M. Bagherzadeh, H. Navi, M. Chegeni, M. Hosseinifard, M. Amini, Thin-film nanocomposite membranes
containing aspartic acid-modified MIL-53-NH2 (Al) for boosting desalination and anti-fouling performance, Desalination. 521 (2022) 115386.
[83] L. Gui, Y. Cui, Y. Zhu, X. An, H. Lan, J. Jin, g-C3N4 nanofibers network reinforced polyamide nanofiltration membrane for fast desalination, Sep. Purif. Technol. 293 (2022) 121125.
[84] M. Guo, S. Wang, K. Gu, X. Song, Y. Zhou, C. Gao, Gradient cross-linked structure: Towards superior PVA nanofiltration
membrane performance, J. Memb. Sci. 569 (2019) 83–90.
[85] J. Wang, S.-L. Li, Y. Guan, C. Zhu, G. Gong, Y. Hu, Novel RO membranes fabricated by grafting sulfonamide group:
Improving water permeability, fouling resistance and chlorine resistant performance, J. Memb. Sci. 641 (2022) 119919.
[86] N.A. Khan, H. Wu, Y. Jinqiu, W. Mengyuan, P. Yang, M. Long, A.U. Rahman, N.M. Ahmad, R. Zhang, Z. Jiang,
Incorporating covalent organic framework nanosheets into polyamide membranes for efficient desalination, Sep. Purif.
Technol. 274 (2021) 119046.
[87] Y. Li, S. Yang, K. Zhang, B. Van der Bruggen, Thin film nanocomposite reverse osmosis membrane modified by two
dimensional laminar MoS2 with improved desalination performance and fouling-resistant characteristics, Desalination. 454 (2019) 48–58.
[88] A.A. Heidari, H. Mahdavi, P.K. Kahriz, TFC solvent-resistant nanofiltration membrane prepared via a gyroid-like PE support coated with polydopamine/Tannic acid-Fe (III), J. Ind. Eng. Chem. 106 (2022) 400–410.
[89] Y. Xiao, W. Zhang, Y. Jiao, Y. Xu, H. Lin, Metal-phenolic network as precursor for fabrication of metal-organic framework (MOF) nanofiltration membrane for efficient desalination, J. Memb. Sci. 624 (2021) 119101.
[90] J. Woo, Y. Na, W. Il Choi, S. Kim, J. Kim, J. Hong, D. Sung, Functional ferrocene polymer multilayer coatings for implantable medical devices: Biocompatible, antifouling, and ROS-sensitive controlled release of therapeutic drugs, Acta Biomater. 125 (2021) 242–252.
[91] G. Akonkwa Mulungulungu, T. Mao, K. Han, Two-dimensional graphitic carbon nitride-based membranes for filtration
process: Progresses and challenges, Chem. Eng. J. 427 (2022) 130955.
[92] J. Zhao, L. Shi, C.H. Loh, R. Wang, Preparation of PVDF/PTFE hollow fiber membranes for direct contact membrane
distillation via thermally induced phase separation method, Desalination. 430 (2018) 86–97.
[93] T.-Y. Liu, L.-X. Bian, H.-G. Yuan, B. Pang, Y.-K. Lin, Y. Tong, B. Van der Bruggen, X.-L. Wang, Fabrication of a high-flux
thin film composite hollow fiber nanofiltration membrane for wastewater treatment, J. Memb. Sci. 478 (2015) 25–36.
[94] Z. Cui, N.T. Hassankiadeh, S.Y. Lee, J.M. Lee, K.T. Woo, A. Sanguineti, V. Arcella, Y.M. Lee, E. Drioli, Poly(vinylidene
fluoride) membrane preparation with an environmental diluent via thermally induced phase separation, J. Memb. Sci. 444
(2013) 223–236.
[95] S. Xue, C. Li, J. Li, H. Zhu, Y. Guo, A catechol-based biomimetic strategy combined with surface mineralization to enhance hydrophilicity and anti-fouling property of PTFE flat membrane, J. Memb. Sci. 524 (2017) 409–418.
[96] Y. Qin, H. Yang, Z. Xu, F. Li, Surface Modification of Polyacrylonitrile Membrane by Chemical Reaction and Physical
Coating: Comparison between Static and Pore-Flowing Procedures, ACS Omega. 3 (2018) 4231–4241.
[97] W. Feng, J. Li, C. Fang, L. Zhang, L. Zhu, Controllable thermal annealing of polyimide membranes for highly-precise organic solvent nanofiltration, J. Memb. Sci. 643 (2022) 120013.
[98] W. Utetiwabo, L. Zhou, M.K. Tufail, X. Zuo, L. Yang, J. Zeng, R. Shao, W. Yang, Insight into the effects of dislocations in
nanoscale titanium niobium oxide (Ti2Nb14O39) anode for boosting lithium-ion storage, J. Colloid Interface Sci. 608 (2022) 90–102.
[99] J.D.A.S. Pereira, R.C.T. Camargo, J.C.S.C. Filho, N. Alves, M.A. Rodriguez-Perez, C.J.L. Constantino, Biomaterials from
blends of fluoropolymers and corn starch—implant and structural aspects, Mater. Sci. Eng. C. 36 (2014) 226–236.
[100] H. Rajati, A.H. Navarchian, D. Rodrigue, S. Tangestaninejad, Improved CO2 transport properties of Matrimid membranes by adding amine-functionalized PVDF and MIL-101(Cr), Sep. Purif. Technol. 235 (2020) 116149.
[101] H. Mahdavi, M. Karami, Cross-linked mixed matrix membranes made up of amine-functionalized silica and
chloromethylated polysulfone for organic solvent nanofiltration applications, J. Environ. Chem. Eng. 10 (2022) 107145.
[102] Y. Li, Y. Su, Y. Dong, X. Zhao, Z. Jiang, R. Zhang, J. Zhao, Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers, Desalination. 333 (2014) 59–65.
[103] M.S. Mia, B. Yan, X. Zhu, T. Xing, G. Chen, Dopamine Grafted Iron-Loaded Waste Silk for Fenton-Like Removal of Toxic Water Pollutants, Polym. . 11 (2019). doi:10.3390/polym11122037.
[104] G. Wang, Y. Weng, J. Zhao, R. Chen, D. Xie, Preparation of a functional poly(ether imide) membrane for potential alkaline fuel cell applications: Chloromethylation, J. Appl. Polym. Sci. 112 (2009) 721–727.
[105] D.-C. Guo JunAU - Yu, HongmeiAU - Jiang, GuangAU - Shao, ZhigangTI - Self-Supporting NiFe Layered Double
Hydroxide “Nanoflower” Cluster Anode Electrode for an Efficient Alkaline Anion Exchange Membrane Water
Electrolyzer, No Title, Energies. 15 (2022). doi:10.3390/en15134645.