[1] A.A. Fadda, A. El-Mekabaty, I.A. Mousa, K.M. Elattar, Chemistry of 3-(1H-indol-3-yl)-3-oxopropanenitrile, Synth. Commun. 44(11) (2014) 1579-1599.
[2] Y.S. Wei, M. Zhang, R. Zou, Q. Xu, Metal–organic framework-based catalysts with single metal sites, Chem. Rev. 120(21)
(2020) 12089-12174.
[3] N.A. Khan, E. Haque, S.H. Jhung, Rapid syntheses of a metal–organic framework material Cu3(BTC)2(H2O)3 under microwave: a quantitative analysis of accelerated syntheses, Phys. Chem. Chem. Phys. 12(11) (2010) 2625-2631.
[4] N. Anbu, A. Dhakshinamoorthy, Cu3(BTC)2 metal-organic framework catalyzed N-arylation of benzimidazoles and imidazoles with phenylboronic acid, J. Ind. Eng. Chem. 65 (2018) 120-126.
[5] E. Pérez‐Mayoral, J. Čejka, [Cu3(BTC)2]: a metal–organic framework catalyst for the Friedländer reaction, Chem. Cat. Chem. 3(1) (2011) 157-159.
[6] A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Cu3(BTC)2 as heterogeneous catalyst for the room temperature oxidative
hydroxylation of arylboronic acids, Tetrahedron 72(22) (2016) 2895-2899.
[7] X. Zhang, W. Dong, Y. Luan, M. Yang, L. Tan, Y. Guo, H. Gao, Y. Tang, R. Dang, J. Li, Highly efficient sulfonatedpolystyrene–Cu (II)@Cu3(BTC)2 core–shell microsphere catalysts for base-free aerobic oxidation of alcohols, J. Mater. Chem. A. 3(8) (2015) 4266-4273.
[8] Q. Zhao, L. Zhu, G. Lin, G. Chen, B. Liu, L. Zhang, T. Duan, J. Lei, Controllable synthesis of porous Cu-BTC@ polymer
composite beads for iodine capture, ACS Appl. Mater. Interfaces 11(45) (2019) 42635-42645.
[9] D. Mondal, P.L. Kalar, S. Kori, S. Gayen, K. Das, Recent developments on synthesis of indole derivatives through green
approaches and their pharmaceutical applications, Curr. Org. Chem. 24(22) (2020) 2665-2693.
[10] Y. Oikawa, H. Hirasawa, O. Yonemitsu, Meldrum's acid in organic synthesis. 1. A convenient one-pot synthesis of ethyl
indolepropionates, Tetrahedron Lett. 19(20) (1978) 1759-1762.
[11] C. Garkoti, J. Shabir, P. Gupta, M. Sharma, S. Mozumdar, Heterogenization of amine-functionalized ionic liquids using
graphene oxide as a support material: a highly efficient catalyst for the synthesis of 3-substituted indoles via Yonemitsu-type reaction, New J. Chem. 41(24) (2017) 15545-15554.
[12] S. Gerard, A. Renzetti, B. Lefevre, A. Fontana, P. de Maria, J. Sapi, Multicomponent reactions studies: Yonemitsu-type
trimolecular condensations promoted by Ti (IV) derivatives, Tetrahedron 66(16) (2010) 3065-3069.
[13] A. Renzetti, E. Boffa, M. Colazzo, S. Gérard, J. Sapi, T.-H. Chan, H. Nakazawa, C. Villani, A. Fontana, Yonemitsu-type
condensations catalysed by proline and Eu(OTf)₃, RSC advances 4 (2014) pp. 47992-47999.
[14] K. Semba, R. Kameyama, Y. Nakao, Copper-catalyzed semihydrogenation of alkynes to Z-alkenes, Synlett 26(03) (2015) 318-322.
[15] S.S.-Y. Chui, S.M.-F. Lo, J.P. Charmant, A.G. Orpen, I.D. Williams, A chemically functionalizable nanoporous material
[Cu3(TMA)2 (H2O)3]n, Science 283(5405) (1999) 1148-1150.
[16] K. Schlichte, T. Kratzke, S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic
framework compound Cu3(BTC)2, Microporous Mesoporous Mater. 73(1-2) (2004) 81-88.
[17] U.C. Rajesh, V.S. Pavan, D.S. Rawat, Hydromagnesite rectangular thin sheets as efficient heterogeneous catalysts for the synthesis of 3-substituted indoles via Yonemitsu-type condensation in water, ACS Sustain. Chem. Eng. 3(7) (2015) 1536-1543.