[1] F. Dabbagh Moghaddam, F. Romana Bertani, Application of Microfluidic Platforms in Cancer Therapy, Mater. Chem.
Horizons. 1 (2022) 69–88.
[2] N. Movagharnezhad, S. Ehsanimehr, P. Najafi Moghadam, Synthesis of Poly (N-vinylpyrrolidone)-grafted-Magnetite
Bromoacetylated Cellulose via ATRP for Drug Delivery, Mater. Chem. Horizons. 1 (2022) 89–98.
[3] H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global Cancer Statistics 2020:
GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA. Cancer J. Clin. 71 (2021)
209–249.
[4] M. Wiersma, N. Ghinea, I. Kerridge, W. Lipworth, ‘Treat them into the grave’: cancer physicians’ attitudes towards the use of high-cost cancer medicines at the end of life, Sociol. Heal. Illn. 41 (2019) 343–359.
[5] M. Ashrafizadeh, E. Nazarzadeh Zare, F. Rossi, N. Rabiee, E. Sharifi, P. Makvandi, Photoactive polymers-decorated Cu-Al layered double hydroxide hexagonal architectures: A potential non-viral vector for photothermal therapy and co-delivery of DOX/pCRISPR, Chem. Eng. J. 448 (2022) 137747.
[6] I. Ferreira-Faria, S. Yousefiasl, A. Macário-Soares, M. Pereira-Silva, D. Peixoto, H. Zafar, F. Raza, H. Faneca, F. Veiga, M.R.
Hamblin, F.R. Tay, J. Gao, E. Sharifi, P. Makvandi, A.C. Paiva-Santos, Stem cell membrane-coated abiotic nanomaterials for
biomedical applications, J. Control. Release. 351 (2022) 174–197.
[7] N.D. Modi, A.Y. Abuhelwa, R.A. McKinnon, A. V Boddy, M. Haseloff, M.D. Wiese, T.C. Hoffmann, E.D. Perakslis, A.
Rowland, M.J. Sorich, Audit of data sharing by pharmaceutical companies for anticancer medicines approved by the US Food and Drug Administration, JAMA Oncol. 8 (2022) 1310–1316.
[8] B. Gyawali, R. Sullivan, Economics of cancer medicines: for whose benefit?, New Bioeth. 23 (2017) 95–104.
[9] S. Ramsey, D. Blough, A. Kirchhoff, K. Kreizenbeck, C. Fedorenko, K. Snell, P. Newcomb, W. Hollingworth, K. Overstreet,
Washington State cancer patients found to be at greater risk for bankruptcy than people without a cancer diagnosis, Health Aff. 32 (2013) 1143–1152.
[10] F. Pignatti, U. Wilking, D. Postmus, N. Wilking, J. Delgado, J. Bergh, The value of anticancer drugs—A regulatory view,
Nat. Rev. Clin. Oncol. 19 (2022) 207–215.
[11] V. Prasad, K. De Jesús, S. Mailankody, The high price of anticancer drugs: origins, implications, barriers, solutions, Nat. Rev. Clin. Oncol. 14 (2017) 381–390.
[12] D.J.C. Constable, P.J. Dunn, J.D. Hayler, G.R. Humphrey, J.L. Leazer Jr, R.J. Linderman, K. Lorenz, J. Manley, B.A.
Pearlman, A. Wells, Key green chemistry research areas—a perspective from pharmaceutical manufacturers, Green Chem. 9 (2007) 411–420.
[13] S. Yuan, Y.-Q. Luo, J.-H. Zuo, H. Liu, F. Li, B. Yu, New drug approvals for 2020: Synthesis and clinical applications, Eur. J. Med. Chem. 215 (2021) 113284.
[14] M. Stargardter, A. McBride, J. Tosh, R. Sachdev, M. Yang, A. Ambavane, M. Mittal, H. Vioix, F.X. Liu, Budget impact of
tepotinib in the treatment of adult patients with metastatic non-small cell lung cancer harboring MET ex14 skipping alterations in the United States, J. Med. Econ. 24 (2021) 816–827.
[15] S. Dhillon, Capmatinib: first approval, Drugs. 80 (2020) 1125–1131.
[16] R. Voelker, Targeted Therapy and Diagnostic Test for Non–Small Cell Lung Cancer, Jama. 323 (2020) 2364.
[17] Y.-L. Wu, L. Zhang, D.-W. Kim, X. Liu, D.H. Lee, J.C.-H. Yang, M.-J. Ahn, J.F. Vansteenkiste, W.-C. Su, E. Felip, Phase
1b/2 study of capmatinib plus gefitinib in patients with EGFR-mutated, MET-dysregulated non-small cell lung cancer who
received prior therapy: Final overall survival and safety., (2021) 37–261.
[18] J.F. Gainor, G. Curigliano, D.-W. Kim, D.H. Lee, B. Besse, C.S. Baik, R.C. Doebele, P.A. Cassier, G. Lopes, D.S.W. Tan,
Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): a multi-cohort, open-label, phase 1/2 study, Lancet Oncol. 22 (2021) 959–969.
[19] A. Markham, Pralsetinib: first approval, Drugs. 80 (2020) 1865–1870.
[20] D. Bradford, E. Larkins, S.L. Mushti, L. Rodriguez, A.M. Skinner, W.S. Helms, L.S.L. Price, J.F. Zirkelbach, Y. Li, J. Liu,
FDA approval summary: selpercatinib for the treatment of lung and thyroid cancers with RET gene mutations or fusions, Clin. Cancer Res. 27 (2021) 2130–2135.
[21] A. Markham, Selpercatinib: first approval, Drugs. 80 (2020) 1119–1124.
[22] A. Markham, Lurbinectedin: first approval, Drugs. 80 (2020) 1345–1353.
[23] W. He, Z. Zhang, D. Ma, A Scalable Total Synthesis of the Antitumor Agents Et‐743 and Lurbinectedin, Angew. Chemie Int. Ed. 58 (2019) 3972–3975.
[24] L. Wang, R. Li, C. Song, Y. Chen, H. Long, L. Yang, Small-Molecule Anti-Cancer Drugs From 2016 to 2020: Synthesis and Clinical Application, Nat. Prod. Commun. 16 (2021) 1934578X211040326.
[25] S. Dhillon, Correction to: Ripretinib: First Approval, Drugs. 80 (2020) 1999.
[26] S. Dhillon, Avapritinib: first approval, Drugs. 80 (2020) 433–439.
[27] X. Liang, Q. Yang, P. Wu, C. He, L. Yin, F. Xu, Z. Yin, G. Yue, Y. Zou, L. Li, The synthesis review of the approved tyrosine
kinase inhibitors for anticancer therapy in 2015–2020, Bioorg. Chem. 113 (2021) 105011.
[28] S.M. Hoy, Tazemetostat: first approval, Drugs. 80 (2020) 513–521.
[29] A. Liu, J. Han, A. Nakano, H. Konno, H. Moriwaki, H. Abe, K. Izawa, V.A. Soloshonok, New pharmaceuticals approved by FDA in 2020: Small‐molecule drugs derived from amino acids and related compounds, Chirality. 34 (2022) 86–103.
[30] K. Mitchell, Fraud and the Medicaid Drug Rebate Program, DePaul J. Heal. Care L. 19 (2017) 1.
[31] K.M. Marzilli Ericson, Consumer inertia and firm pricing in the Medicare Part D prescription drug insurance exchange, Am. Econ. J. Econ. Policy. 6 (2014) 38–64.
[32] S.B. Dusetzina, N.L. Keating, Mind the gap: Why closing the doughnut hole is insufficient for increasing Medicare beneficiary access to oral chemotherapy, J. Clin. Oncol. 34 (2016) 375.
[33] M. Tadrous, A. Shakeri, K.N. Hayes, H.L. Neville, J. Houlihan, F. Clement, J.R. Guertin, M.R. Law, T. Gomes, Canadian
trends and projections in prescription drug purchases: 2001–2023, Can. J. Heal. Technol. 1 (2021) 341–561.
[34] L. Fala, Tazverik (Tazemetostat) First FDA-Approved Treatment Specifically for Patients with Epithelioid Sarcoma, 5 (2020) 513–521.
[35] B.M. Corporation, AYVAKIT (Avapritinib). Prescribing Information, (2020) 433–439.
[36] D.P. LLC, Qinlock (ripretinib). Prescribing information. 2020, (2020) 1133–1138.
[37] J.E. Mann, Lurbinectedin (ZepzelcaTM), Oncol. Times. 42 (2020) 18.
[38] W. Elliott, J. Chan, Selpercatinib Capsules (Retevmo), Intern. Med. Alert. 42 (2020) 22–25.
[39] L. Nguyen, S. Monestime, Pralsetinib (Gavreto): Treatment of metastatic non–small-cell lung cancer in patients positive for RET fusions, Am. J. Heal. Pharm. (2021).
[40] M. Sproat, J.E. Mann, Capmatinib (TabrectaTM), Oncol. Times. 43 (2021) 14–41.
[41] G.--B.W. DARMSTADT, TEPMETKO tepotinib, 8 (2020) 829–823.
[42] M.J. Buskes, M.-J. Blanco, Impact of cross-coupling reactions in drug discovery and development, Molecules. 25 (2020) 3493.
[43] A. Piontek, E. Bisz, M. Szostak, Iron‐Catalyzed Cross‐Couplings in the Synthesis of Pharmaceuticals: In Pursuit of
Sustainability, Angew. Chemie Int. Ed. 57 (2018) 11116–11128.
[44] C.C.C. Johansson Seechurn, M.O. Kitching, T.J. Colacot, V. Snieckus, Palladium‐catalyzed cross‐coupling: a historical
contextual perspective to the 2010 Nobel Prize, Angew. Chemie Int. Ed. 51 (2012) 5062–5085.
[45] Y.M.A. Yamada, K. Takeda, H. Takahashi, S. Ikegami, Assembled catalyst of palladium and non-cross-linked amphiphilic polymer ligand for the efficient heterogeneous Heck reaction, Tetrahedron. 60 (2004) 4097–4105.
[46] Z. Khorsandi, A.R. Hajipour, M.R. Sarfjoo, R.S. Varma, A Pd/Cu-Free magnetic cobalt catalyst for C–N cross coupling
reactions: synthesis of abemaciclib and fedratinib, Green Chem. 23 (2021) 5222–5229.
[47] A.R. Hajipour, M.R. Sarfjoo, R.S. Varma, Cobalt Nanoparticle Adorned on Boron-and Nitrogen-Doped 2d-Carbon Material for Sonogashira Cross-Coupling Reactions: Greener and Efficient Synthesis of Anti-Cancer Drug, Ponatinib, Mol. Catal. 532(2022)112701.
[48] B. Czech, W. Buda, Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposites, Environ. Res. 137 (2015) 176–184.
[49] R.S. Kookana, M. Williams, A.B.A. Boxall, D.G.J. Larsson, S. Gaw, K. Choi, H. Yamamoto, S. Thatikonda, Y.-G. Zhu, P.
Carriquiriborde, Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low- middle-and high-income countries, Philos. Trans. R. Soc. B Biol. Sci. 369 (2014) 20130586.
[50] P. Anastas, N. Eghbali, Green Chemistry: Principles and Practice, Chem. Soc. Rev. 39 (2010) 301–312.
[51] S. Gabrielli, A. Palmieri, A. Perosa, M. Selva, R. Ballini, Eco-friendly synthesis of β-nitro ketones from conjugated enones: an important improvement of the Miyakoshi procedure, Green Chem. 13 (2011) 2026–2028.
[52] M. Hassanpour, M.H. Shahavi, G. Heidari, A. Kumar, M. Nodehi, F.D. Moghaddam, M. Mohammadi, N. Nikfarjam, E.
Sharifi, P. Makvandi, H.K. Male, E.N. Zare, Ionic liquid-mediated synthesis of metal nanostructures: Potential application in
cancer diagnosis and therapy, J. Ion. Liq. 2 (2022) 100033.
[53] B.H. Lipshutz, F. Gallou, S. Handa, Evolution of solvents in organic chemistry, ACS Sustain. Chem. Eng. 4 (2016) 5838–
5849.
[54] C.A. Abeare, I. Messa, B.G. Zuccato, B. Merker, L. Erdodi, Prevalence of invalid performance on baseline testing for sportrelated concussion by age and validity indicator, JAMA Neurol. 75 (2018) 697–703.
[55] D. Procopio, C. Siciliano, S. Trombino, D.E. Dumitrescu, F. Suciu, M.L. Di Gioia, Green solvents for the formation of amide linkages, Org. Biomol. Chem. 20 (2022) 1137-1149.
[56] E.M. Kosower, G. Borz, Low polarity water, a novel transition species at the polyethylene–water interface, Phys. Chem.
Chem. Phys. 17 (2015) 24895–24900.
[57] S. Lawrenson, M. North, F. Peigneguy, A. Routledge, Greener solvents for solid-phase synthesis, Green Chem. 19 (2017) 952–962.
[58] M. Shestakova, M. Sillanpää, Removal of dichloromethane from ground and wastewater: A review, Chemosphere. 93 (2013) 1258–1267.
[59] K. Wegner, D. Barnes, K. Manzor, A. Jardine, D. Moran, Evaluation of greener solvents for solid-phase peptide synthesis, Green Chem. Lett. Rev. 14 (2021) 153–164.
[60] Q. Yang, M. Sheng, Y. Huang, Potential safety hazards associated with using N, N-dimethylformamide in chemical reactions, Org. Process Res. Dev. 24 (2020) 1586–1601.
[61] Q. Yang, M. Sheng, J.J. Henkelis, S. Tu, E. Wiensch, H. Zhang, Y. Zhang, C. Tucker, D.E. Ejeh, Explosion hazards of sodium hydride in dimethyl sulfoxide, N, N-dimethylformamide, and N, N-dimethylacetamide, Org. Process Res. Dev. 23 (2019) 2210–2217.
[62] Q. Yang, M. Sheng, X. Li, C. Tucker, S. Vásquez Céspedes, N.J. Webb, G.T. Whiteker, J. Yu, Potential explosion hazards
associated with the autocatalytic thermal decomposition of dimethyl sulfoxide and its mixtures, Org. Process Res. Dev. 24
(2020) 916–939.
[63] L. Benbrahim-Tallaa, B. Lauby-Secretan, D. Loomis, K.Z. Guyton, Y. Grosse, F. El Ghissassi, V. Bouvard, N. Guha, H.
Mattock, K. Straif, Carcinogenicity of perfluorooctanoic acid, tetrafluoroethylene, dichloromethane, 1, 2-dichloropropane,
and 1, 3-propane sultone, Lancet Oncol. 15 (2014) 924.
[64] G.C. Fonger, Hazardous substances data bank (HSDB) as a source of environmental fate information on chemicals,
Toxicology. 103 (1995) 137–145.
[65] S.L. Baum, A.J. Suruda, Toxic hepatitis from dimethylacetamide, Int. J. Occup. Environ. Health. 3 (1997) 1–4.
[66] O.R. Lane, MATERIAL SAFETY DATA SHEET Triethanolamine, 81 (2006) 24.
[67] A.W.C. van den Berg, U. Hanefeld, 4-Dimethylaminopyridine or acid-catalyzed syntheses of esters: A comparison, J. Chem. Educ. 83 (2006) 292.
[68] A. Duereh, Y. Sato, R.L. Smith Jr, H. Inomata, Replacement of hazardous chemicals used in engineering plastics with safe and renewable hydrogen-bond donor and acceptor solvent-pair mixtures, ACS Sustain. Chem. Eng. 3 (2015) 1881–1889.
[69] K. Tadele, S. Verma, M.A. Gonzalez, R.S. Varma, A sustainable approach to empower the bio-based future: upgrading of biomass via process intensification, Green Chem. 19 (2017) 1624–1627.
[70] S. da Costa Vasconcelos, L. Marchini, C. Lima, V.G.C. Madriaga, R.S.D.A. Ribeiro, V. Rossa, L.E.M. Ferreira, F.C. de C. da
Silva, V.F. Ferreira, F.B. Passos, Single-atom catalysts for the upgrading of biomass-derived molecules: an overview on their preparation, properties and applications, Green Chem. 24 (2022) 2722-2751.
[71] F. Kerkel, M. Markiewicz, S. Stolte, E. Müller, W. Kunz, The green platform molecule gamma-valerolactone–ecotoxicity,
biodegradability, solvent properties, and potential applications, Green Chem. 23 (2021) 2962–2976.
[72] T.M. Lima, C.G.S. Lima, A.K. Rathi, M.B. Gawande, J. Tucek, E.A. Urquieta-González, R. Zbořil, M.W. Paixão, R.S. Varma,
Magnetic ZSM-5 zeolite: a selective catalyst for the valorization of furfuryl alcohol to γ-valerolactone, alkyl levulinates or
levulinic acid, Green Chem. 18 (2016) 5586–5593.
[73] R.S. Varma, Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications, ACS Sustain. Chem. Eng. 7 (2019) 6458–6470.
[74] F. Passamonti, M. Maffioli, The role of JAK2 inhibitors in MPNs 7 years after approval, Blood, J. Am. Soc. Hematol. 131
(2018) 2426–2435.
[75] H.A. Blair, Fedratinib: first approval, Drugs. 79 (2019) 1719–1725.
[76] A. Tefferi, Compositions and methods for treating myelofibrosis, (2012). WO2012060847A1.
https://patents.google.com/patent/WO2012060847A1/en
[77] E.S. Kim, Abemaciclib: first global approval, Drugs. 77 (2017) 2063–2070.