An Overview on New Anticancer Drugs Approved by Food and Drug Administration: Impending Economic and Environmental Challenges

Document Type : Review Article

Authors

1 Department of Chemistry, Isfahan University of Technology, Isfahan 415683111, Iran

2 Department of Mechanical Engineering, Islamic Azad University, Rasht Branch, Rasht, Iran

3 Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137–66731 Iran

4 Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc, ˇSlechtitelů, Olomouc, Czech Republic

Abstract

One of the leading causes of death worldwide these days is cancer, and new anticancer drugs have been developed to treat it with all the vigor of advancement of science and technology. Unfortunately, these drugs are very expensive and besides they cause great economic hardship for cancer patients, and society as a whole. On the other hand, the deployment of hazardous chemicals, and especially the common commercial solvents in the production of anti-cancer drugs, causes environmental pollution thus contributing to the drug purification costs. Herein, recent FDA-approved anticancer drugs in 2020-2021, their mechanism of action, financial challenges, and associated environmental hazards are deliberated, with possible solutions that may reduce not only the costs of the drugs but also the environmental pollution involved in synthesis of anticancer drugs via greener pathways by appropriate substitution

Graphical Abstract

An Overview on New Anticancer Drugs Approved by Food and Drug Administration: Impending Economic and Environmental Challenges

Keywords


 [1] F. Dabbagh Moghaddam, F. Romana Bertani, Application of Microfluidic Platforms in Cancer Therapy, Mater. Chem.
Horizons. 1 (2022) 69–88.
[2] N. Movagharnezhad, S. Ehsanimehr, P. Najafi Moghadam, Synthesis of Poly (
N-vinylpyrrolidone)-grafted-Magnetite
Bromoacetylated Cellulose via ATRP for Drug Delivery, Mater. Chem. Horizons. 1 (2022) 89–98.
[3] H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global Cancer Statistics 2020:
GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries, CA. Cancer J. Clin. 71 (2021)
209–249.
[4] M. Wiersma, N. Ghinea, I. Kerridge, W. Lipworth, ‘Treat them into the grave’: cancer physicians’ attitudes towards the use of high-cost cancer medicines at the end of life, Sociol. Heal. Illn. 41 (2019) 343–359.
[5] M. Ashrafizadeh, E. Nazarzadeh Zare, F. Rossi, N. Rabiee, E. Sharifi, P. Makvandi, Photoactive polymers-decorated Cu-Al layered double hydroxide hexagonal architectures: A potential non-viral vector for photothermal therapy and co-delivery of DOX/pCRISPR, Chem. Eng. J. 448 (2022) 137747.
[6] I. Ferreira-Faria, S. Yousefiasl, A. Macário-Soares, M. Pereira-Silva, D. Peixoto, H. Zafar, F. Raza, H. Faneca, F. Veiga, M.R.
Hamblin, F.R. Tay, J. Gao, E. Sharifi, P. Makvandi, A.C. Paiva-Santos, Stem cell membrane-coated abiotic nanomaterials for
biomedical applications, J. Control. Release. 351 (2022) 174–197.
[7] N.D. Modi, A.Y. Abuhelwa, R.A. McKinnon, A. V Boddy, M. Haseloff, M.D. Wiese, T.C. Hoffmann, E.D. Perakslis, A.
Rowland, M.J. Sorich, Audit of data sharing by pharmaceutical companies for anticancer medicines approved by the US Food and Drug Administration, JAMA Oncol. 8 (2022) 1310–1316.
[8] B. Gyawali, R. Sullivan, Economics of cancer medicines: for whose benefit?, New Bioeth. 23 (2017) 95–104.
[9] S. Ramsey, D. Blough, A. Kirchhoff, K. Kreizenbeck, C. Fedorenko, K. Snell, P. Newcomb, W. Hollingworth, K. Overstreet,
Washington State cancer patients found to be at greater risk for bankruptcy than people without a cancer diagnosis, Health Aff. 32 (2013) 1143–1152.
[10] F. Pignatti, U. Wilking, D. Postmus, N. Wilking, J. Delgado, J. Bergh, The value of anticancer drugs—A regulatory view,
Nat. Rev. Clin. Oncol. 19 (2022) 207–215.
[11] V. Prasad, K. De Jesús, S. Mailankody, The high price of anticancer drugs: origins, implications, barriers, solutions, Nat. Rev. Clin. Oncol. 14 (2017) 381–390.
[12] D.J.C. Constable, P.J. Dunn, J.D. Hayler, G.R. Humphrey, J.L. Leazer Jr, R.J. Linderman, K. Lorenz, J. Manley, B.A.
Pearlman, A. Wells, Key green chemistry research areas—a perspective from pharmaceutical manufacturers, Green Chem. 9 (2007) 411–420.
[13] S. Yuan, Y.-Q. Luo, J.-H. Zuo, H. Liu, F. Li, B. Yu, New drug approvals for 2020: Synthesis and clinical applications, Eur. J. Med. Chem. 215 (2021) 113284.
[14] M. Stargardter, A. McBride, J. Tosh, R. Sachdev, M. Yang, A. Ambavane, M. Mittal, H. Vioix, F.X. Liu, Budget impact of
tepotinib in the treatment of adult patients with metastatic non-small cell lung cancer harboring MET ex14 skipping alterations in the United States, J. Med. Econ. 24 (2021) 816–827.
[15] S. Dhillon, Capmatinib: first approval, Drugs. 80 (2020) 1125–1131.
[16] R. Voelker, Targeted Therapy and Diagnostic Test for Non–Small Cell Lung Cancer, Jama. 323 (2020) 2364.
[17] Y.-L. Wu, L. Zhang, D.-W. Kim, X. Liu, D.H. Lee, J.C.-H. Yang, M.-J. Ahn, J.F. Vansteenkiste, W.-C. Su, E. Felip, Phase
1b/2 study of capmatinib plus gefitinib in patients with EGFR-mutated, MET-dysregulated non-small cell lung cancer who
received prior therapy: Final overall survival and safety., (2021) 37–261.
[18] J.F. Gainor, G. Curigliano, D.-W. Kim, D.H. Lee, B. Besse, C.S. Baik, R.C. Doebele, P.A. Cassier, G. Lopes, D.S.W. Tan,
Pralsetinib for RET fusion-positive non-small-cell lung cancer (ARROW): a multi-cohort, open-label, phase 1/2 study, Lancet Oncol. 22 (2021) 959–969.
[19] A. Markham, Pralsetinib: first approval, Drugs. 80 (2020) 1865–1870.
[20] D. Bradford, E. Larkins, S.L. Mushti, L. Rodriguez, A.M. Skinner, W.S. Helms, L.S.L. Price, J.F. Zirkelbach, Y. Li, J. Liu,
FDA approval summary: selpercatinib for the treatment of lung and thyroid cancers with RET gene mutations or fusions, Clin. Cancer Res. 27 (2021) 2130–2135.
[21] A. Markham, Selpercatinib: first approval, Drugs. 80 (2020) 1119–1124.
[22] A. Markham, Lurbinectedin: first approval, Drugs. 80 (2020) 1345–1353.
[23] W. He, Z. Zhang, D. Ma, A Scalable Total Synthesis of the Antitumor Agents Et
743 and Lurbinectedin, Angew. Chemie Int. Ed. 58 (2019) 3972–3975.
[24] L. Wang, R. Li, C. Song, Y. Chen, H. Long, L. Yang, Small-Molecule Anti-Cancer Drugs From 2016 to 2020: Synthesis and Clinical Application, Nat. Prod. Commun. 16 (2021) 1934578X211040326.
[25] S. Dhillon, Correction to: Ripretinib: First Approval, Drugs. 80 (2020) 1999.
[26] S. Dhillon, Avapritinib: first approval, Drugs. 80 (2020) 433–439.
[27] X. Liang, Q. Yang, P. Wu, C. He, L. Yin, F. Xu, Z. Yin, G. Yue, Y. Zou, L. Li, The synthesis review of the approved tyrosine
kinase inhibitors for anticancer therapy in 2015–2020, Bioorg. Chem. 113 (2021) 105011.
[28] S.M. Hoy, Tazemetostat: first approval, Drugs. 80 (2020) 513–521.
[29] A. Liu, J. Han, A. Nakano, H. Konno, H. Moriwaki, H. Abe, K. Izawa, V.A. Soloshonok, New pharmaceuticals approved by FDA in 2020: Smallmolecule drugs derived from amino acids and related compounds, Chirality. 34 (2022) 86–103.
[30] K. Mitchell, Fraud and the Medicaid Drug Rebate Program, DePaul J. Heal. Care L. 19 (2017) 1.
[31] K.M. Marzilli Ericson, Consumer inertia and firm pricing in the Medicare Part D prescription drug insurance exchange, Am. Econ. J. Econ. Policy. 6 (2014) 38–64.
[32] S.B. Dusetzina, N.L. Keating, Mind the gap: Why closing the doughnut hole is insufficient for increasing Medicare beneficiary access to oral chemotherapy, J. Clin. Oncol. 34 (2016) 375.
[33] M. Tadrous, A. Shakeri, K.N. Hayes, H.L. Neville, J. Houlihan, F. Clement, J.R. Guertin, M.R. Law, T. Gomes, Canadian
trends and projections in prescription drug purchases: 2001–2023, Can. J. Heal. Technol. 1 (2021) 341–561.
[34] L. Fala, Tazverik (Tazemetostat) First FDA-Approved Treatment Specifically for Patients with Epithelioid Sarcoma, 5 (2020) 513–521.
[35] B.M. Corporation, AYVAKIT (Avapritinib). Prescribing Information, (2020) 433–439.
[36] D.P. LLC, Qinlock (ripretinib). Prescribing information. 2020, (2020) 1133–1138.
[37] J.E. Mann, Lurbinectedin (Zepzelca
TM), Oncol. Times. 42 (2020) 18.
[38] W. Elliott, J. Chan, Selpercatinib Capsules (Retevmo), Intern. Med. Alert. 42 (2020) 22–25.
[39] L. Nguyen, S. Monestime, Pralsetinib (Gavreto): Treatment of metastatic non–small-cell lung cancer in patients positive for RET fusions, Am. J. Heal. Pharm. (2021).
[40] M. Sproat, J.E. Mann, Capmatinib (Tabrecta
TM), Oncol. Times. 43 (2021) 14–41.
[41] G.--B.W. DARMSTADT, TEPMETKO tepotinib, 8 (2020) 829–823.
[42] M.J. Buskes, M.-J. Blanco, Impact of cross-coupling reactions in drug discovery and development, Molecules. 25 (2020) 3493.
[43] A. Piontek, E. Bisz, M. Szostak, Iron
Catalyzed CrossCouplings in the Synthesis of Pharmaceuticals: In Pursuit of
Sustainability, Angew. Chemie Int. Ed. 57 (2018) 11116–11128.
[44] C.C.C. Johansson Seechurn, M.O. Kitching, T.J. Colacot, V. Snieckus, Palladium
catalyzed crosscoupling: a historical
contextual perspective to the 2010 Nobel Prize, Angew. Chemie Int. Ed. 51 (2012) 5062–5085.
[45] Y.M.A. Yamada, K. Takeda, H. Takahashi, S. Ikegami, Assembled catalyst of palladium and non-cross-linked amphiphilic polymer ligand for the efficient heterogeneous Heck reaction, Tetrahedron. 60 (2004) 4097–4105.
[46] Z. Khorsandi, A.R. Hajipour, M.R. Sarfjoo, R.S. Varma, A Pd/Cu-Free magnetic cobalt catalyst for C–N cross coupling
reactions: synthesis of abemaciclib and fedratinib, Green Chem. 23 (2021) 5222–5229.
[47] A.R. Hajipour, M.R. Sarfjoo, R.S. Varma, Cobalt Nanoparticle Adorned on Boron-and Nitrogen-Doped 2d-Carbon Material for Sonogashira Cross-Coupling Reactions: Greener and Efficient Synthesis of Anti-Cancer Drug, Ponatinib, Mol. Catal. 532(2022)112701.
[48] B. Czech, W. Buda, Photocatalytic treatment of pharmaceutical wastewater using new multiwall-carbon nanotubes/TiO2/SiO2 nanocomposites, Environ. Res. 137 (2015) 176–184.
[49] R.S. Kookana, M. Williams, A.B.A. Boxall, D.G.J. Larsson, S. Gaw, K. Choi, H. Yamamoto, S. Thatikonda, Y.-G. Zhu, P.
Carriquiriborde, Potential ecological footprints of active pharmaceutical ingredients: an examination of risk factors in low- middle-and high-income countries, Philos. Trans. R. Soc. B Biol. Sci. 369 (2014) 20130586.
[50] P. Anastas, N. Eghbali, Green Chemistry: Principles and Practice, Chem. Soc. Rev. 39 (2010) 301–312.
[51] S. Gabrielli, A. Palmieri, A. Perosa, M. Selva, R. Ballini, Eco-friendly synthesis of
β-nitro ketones from conjugated enones: an important improvement of the Miyakoshi procedure, Green Chem. 13 (2011) 2026–2028.
[52] M. Hassanpour, M.H. Shahavi, G. Heidari, A. Kumar, M. Nodehi, F.D. Moghaddam, M. Mohammadi, N. Nikfarjam, E.
Sharifi, P. Makvandi, H.K. Male, E.N. Zare, Ionic liquid-mediated synthesis of metal nanostructures: Potential application in
cancer diagnosis and therapy, J. Ion. Liq. 2 (2022) 100033.
[53] B.H. Lipshutz, F. Gallou, S. Handa, Evolution of solvents in organic chemistry, ACS Sustain. Chem. Eng. 4 (2016) 5838–
5849.
[54] C.A. Abeare, I. Messa, B.G. Zuccato, B. Merker, L. Erdodi, Prevalence of invalid performance on baseline testing for sportrelated concussion by age and validity indicator, JAMA Neurol. 75 (2018) 697–703.
[55] D. Procopio, C. Siciliano, S. Trombino, D.E. Dumitrescu, F. Suciu, M.L. Di Gioia, Green solvents for the formation of amide linkages, Org. Biomol. Chem. 20 (2022) 1137-1149.
[56] E.M. Kosower, G. Borz, Low polarity water, a novel transition species at the polyethylene–water interface, Phys. Chem.
Chem. Phys. 17 (2015) 24895–24900.
[57] S. Lawrenson, M. North, F. Peigneguy, A. Routledge, Greener solvents for solid-phase synthesis, Green Chem. 19 (2017) 952–962.
[58] M. Shestakova, M. Sillanpää, Removal of dichloromethane from ground and wastewater: A review, Chemosphere. 93 (2013) 1258–1267.
[59] K. Wegner, D. Barnes, K. Manzor, A. Jardine, D. Moran, Evaluation of greener solvents for solid-phase peptide synthesis, Green Chem. Lett. Rev. 14 (2021) 153–164.
[60] Q. Yang, M. Sheng, Y. Huang, Potential safety hazards associated with using N, N-dimethylformamide in chemical reactions, Org. Process Res. Dev. 24 (2020) 1586–1601.
[61] Q. Yang, M. Sheng, J.J. Henkelis, S. Tu, E. Wiensch, H. Zhang, Y. Zhang, C. Tucker, D.E. Ejeh, Explosion hazards of sodium hydride in dimethyl sulfoxide, N, N-dimethylformamide, and N, N-dimethylacetamide, Org. Process Res. Dev. 23 (2019) 2210–2217.
[62] Q. Yang, M. Sheng, X. Li, C. Tucker, S. Vásquez Céspedes, N.J. Webb, G.T. Whiteker, J. Yu, Potential explosion hazards
associated with the autocatalytic thermal decomposition of dimethyl sulfoxide and its mixtures, Org. Process Res. Dev. 24
(2020) 916–939.
[63] L. Benbrahim-Tallaa, B. Lauby-Secretan, D. Loomis, K.Z. Guyton, Y. Grosse, F. El Ghissassi, V. Bouvard, N. Guha, H.
Mattock, K. Straif, Carcinogenicity of perfluorooctanoic acid, tetrafluoroethylene, dichloromethane, 1, 2-dichloropropane,
and 1, 3-propane sultone, Lancet Oncol. 15 (2014) 924.
[64] G.C. Fonger, Hazardous substances data bank (HSDB) as a source of environmental fate information on chemicals,
Toxicology. 103 (1995) 137–145.
[65] S.L. Baum, A.J. Suruda, Toxic hepatitis from dimethylacetamide, Int. J. Occup. Environ. Health. 3 (1997) 1–4.
[66] O.R. Lane, MATERIAL SAFETY DATA SHEET Triethanolamine, 81 (2006) 24.
[67] A.W.C. van den Berg, U. Hanefeld, 4-Dimethylaminopyridine or acid-catalyzed syntheses of esters: A comparison, J. Chem. Educ. 83 (2006) 292.
[68] A. Duereh, Y. Sato, R.L. Smith Jr, H. Inomata, Replacement of hazardous chemicals used in engineering plastics with safe and renewable hydrogen-bond donor and acceptor solvent-pair mixtures, ACS Sustain. Chem. Eng. 3 (2015) 1881–1889.
[69] K. Tadele, S. Verma, M.A. Gonzalez, R.S. Varma, A sustainable approach to empower the bio-based future: upgrading of biomass via process intensification, Green Chem. 19 (2017) 1624–1627.
[70] S. da Costa Vasconcelos, L. Marchini, C. Lima, V.G.C. Madriaga, R.S.D.A. Ribeiro, V. Rossa, L.E.M. Ferreira, F.C. de C. da
Silva, V.F. Ferreira, F.B. Passos, Single-atom catalysts for the upgrading of biomass-derived molecules: an overview on their preparation, properties and applications, Green Chem. 24 (2022) 2722-2751.
[71] F. Kerkel, M. Markiewicz, S. Stolte, E. Müller, W. Kunz, The green platform molecule gamma-valerolactone–ecotoxicity,
biodegradability, solvent properties, and potential applications, Green Chem. 23 (2021) 2962–2976.
[72] T.M. Lima, C.G.S. Lima, A.K. Rathi, M.B. Gawande, J. Tucek, E.A. Urquieta-González, R. Zbo
řil, M.W. Paixão, R.S. Varma,
Magnetic ZSM-5 zeolite: a selective catalyst for the valorization of furfuryl alcohol to
γ-valerolactone, alkyl levulinates or
levulinic acid, Green Chem. 18 (2016) 5586–5593.
[73] R.S. Varma, Biomass-derived renewable carbonaceous materials for sustainable chemical and environmental applications, ACS Sustain. Chem. Eng. 7 (2019) 6458–6470.
[74] F. Passamonti, M. Maffioli, The role of JAK2 inhibitors in MPNs 7 years after approval, Blood, J. Am. Soc. Hematol. 131
(2018) 2426–2435.
[75] H.A. Blair, Fedratinib: first approval, Drugs. 79 (2019) 1719–1725.
[76] A. Tefferi, Compositions and methods for treating myelofibrosis, (2012). WO2012060847A1.
https://patents.google.com/patent/WO2012060847A1/en
[77] E.S. Kim, Abemaciclib: first global approval, Drugs. 77 (2017) 2063–2070.