Development of Microfluidic Platforms: Human Uterine Cervix-on-a-Chip

Document Type : Review Article

Author

Department of Scientific and Medical Affairs, Procare Health Iberia, Barcelona 08860, Spain

Abstract

Infections, endometriosis, and carcinomas are just a few of the conditions that can affect the uterine cervix in humans. Since the architecture and physiology of the human uterine cervix in humans and other primates differ greatly from that of the majority of frequently used animal models, in vitro models of the human uterine cervix play an increasingly essential role in both fundamental and translational research. The function of existing in vitro models of the human uterine cervix commonly relies on the use of established cervical epithelial cell lines, such as columnar and squamosal epithelial cells, which line the endocervical canal and ectocervical zone of the cervix, respectively. Consequently, there is a great need for a better model to study human uterine and its related diseases. Recently, microfluidics systems called "Organs-on-Chip" provided an opportunity to fulfill that requirement. These platforms incorporate artificial or real tiny tissues grown inside microfluidic chips. The chips are made to regulate cell microenvironments and preserve tissue-specific functionalities in order to resemble human physiology more closely. Organs-on-Chip platforms have attracted interest as a next-generation experimental platform to study human uterine cervix physiology and diseases. Moreover, the impact of medicines in finding a solution for cervical cancer by combining advancements in tissue engineering and microfabrication. In this study, we reviewed the latest studies in designing the human uterine cervix-on-a-chip.

Graphical Abstract

Development of Microfluidic Platforms: Human Uterine Cervix-on-a-Chip

Keywords


 [1] W. Jia, Y. Qi, Z. Hu, Z. Xiong, Z. Luo, Z. Xiang, J. Hu, W. Lu, Facile fabrication of monodisperse CoFe2O4 nanocrystals@
dopamine@ DOX hybrids for magnetic-responsive on-demand cancer theranostic applications, Adv Compos Hybrid Mater. 4 (2021) 989–1001.
[2] H.S. Tuli, R. Joshi, G. Kaur, V.K. Garg, K. Sak, M. Varol, J. Kaur, S.A. Alharbi, T.A. Alahmadi, D. Aggarwal, Metal
nanoparticles in cancer: from synthesis and metabolism to cellular interactions, J Nanostructure Chem. (2022) 1–28.
[3] S. Gulla, D. Lomada, P.B. Araveti, A. Srivastava, M.K. Murikinati, K.R. Reddy, M.C. Reddy, T. Altalhi, Titanium dioxide
nanotubes conjugated with quercetin function as an effective anticancer agent by inducing apoptosis in melanoma cells, J Nanostructure Chem. 11 (2021) 721–734.
[4] N. Movagharnezhad, S. Ehsanimehr, P. Najafi Moghadam, Synthesis of Poly (N-vinylpyrrolidone)-grafted-Magnetite
Bromoacetylated Cellulose via ATRP for Drug Delivery, Mater. Chem. Horizons. 1 (2022) 89–98.
[5] I. Soerjomataram, F. Bray, Planning for tomorrow: Global cancer incidence and the role of prevention 2020–2070, Nat Rev Clin Oncol. 18 (2021) 663–672.
[6] D. Singh, J. Vignat, V. Lorenzoni, M. Eslahi, O. Ginsburg, B. Lauby-Secretan, M. Arbyn, P. Basu, F. Bray, S. Vaccarella, The
Cervical Cancer Burden in 2020 and Recent Trends in Incidence: A Baseline Assessment for Monitoring the Who Global
Cervical Cancer Elimination Initiative, Available at SSRN 4188567. (n.d.).
[7] L. Mutlu, J. Tymon-Rosario, J. Harold, G. Menderes, Targeted treatment options for the management of metastatic/persistent and recurrent cervical cancer, Expert Rev Anticancer Ther. 22 (2022) 633-645.
[8] M. Arbyn, E. Weiderpass, L. Bruni, S. de Sanjosé, M. Saraiya, J. Ferlay, F. Bray, Estimates of incidence and mortality of
cervical cancer in 2018: a worldwide analysis, Lancet Glob Health. 8 (2020) e191–e203.
[9] E.L. Krakauer, X. Kwete, K. Kane, G. Afshan, L. Bazzett-Matabele, D.D.R. Bien-Aimé, S. Byrne-Martelli, S. Connor, R.
Correa, C.R.B. Devi, Cervical cancer-associated suffering: Estimating the palliative care needs of a highly vulnerable
population, JCO Glob Oncol. 7 (2021) 862–872.
[10] M.E. Turyk, T.R. Golub, N.B. Wood, J.L. Hawkins, G.D. Wilbanks, Growth and characterization of epithelial cells from
normal human uterine ectocervix and endocervix, In Vitro Cell. Dev. Biol. 25 (1989) 544–556.
[11] P. Dey, Essentials of Gynecologic Pathology, JP Medical Ltd, 2017.
[12] R.K. Gurumurthy, S. Koster, N. Kumar, T.F. Meyer, C. Chumduri, Patient-derived and mouse endo-ectocervical organoid generation, genetic manipulation and applications to model infection, Nat Protoc. 17 (2022) 1658–1690.
[13] E.A. Islam, V.C. Anipindi, I. Francis, Y. Shaik-Dasthagirisaheb, S. Xu, N. Leung, A. Sintsova, M. Amin, C. Kaushic, L.M.
Wetzler, Specific binding to differentially-expressed human CEACAMs determines the outcome of Neisseria gonorrhoeae
infections along the female reproductive tract, Infect Immun. 23 (2018) e00092-18.
[14] D. Laville, F. Casteillo, V. Yvorel, O. Tiffet, J.-M. Vergnon, M. Péoc’h, F. Forest, Immune escape is an early event in preinvasive lesions of lung squamous cell carcinoma, Diagnostics. 10 (2020) 503.
[15] M. Hakim, L. Kermanshah, H. Abouali, H.M. Hashemi, A. Yari, F. Khorasheh, I. Alemzadeh, M. Vossoughi, Unraveling
Cancer Metastatic Cascade Using Microfluidics-based Technologies, Biophys Rev. 14 (2022) 517-543.
[16] J.T. Schiller, P. M. Day, R.C.Kines, Current understanding of the mechanism of HPV infection. Gynecol. Oncol. 118(1)
(2010) S12-S17.
[17] K.S. Vasanthan, V. Srinivasan, V. Mathur, P. Agarwal, N. Negi, S. Kumari, 3D Bioprinting for esophageal tissue regeneration: A review, J Mater Res. 37 (2022) 88–113.
[18] C.A. Burmeister, S.F. Khan, G. Schäfer, N. Mbatani, T. Adams, J. Moodley, S. Prince, Cervical cancer therapies: Current
challenges and future perspectives, Tumour Virus Res. 13 (2022) 200238.
[19] S. Bhatia, T. Naved, S. Sardana, Stem cell culture, in: Introduction to Pharmaceutical Biotechnology, Volume 3: Animal
Tissue Culture and Biopharmaceuticals, IOP Publishing, 2019.
[20] B.C.R. Marsh, M. Massaro-Giordano, C.M. Marshall, R.M. Lavker, P.J. Jensen, Initiation and characterization of keratinocyte cultures from biopsies of normal human conjunctiva, Exp Eye Res. 74 (2002) 61–69.
[21] R.A. Blanton, N. Perez-Reyes, D.T. Merrick, J.K. McDougall, Epithelial cells immortalized by human papillomaviruses have premalignant characteristics in organotypic culture., Am J Pathol. 138 (1991) 673.
[22] M.C. Moran, R.P. Pandya, K.A. Leffler, T. Yoshida, L.A. Beck, M.G. Brewer, Characterization of human keratinocyte cell
lines for barrier studies, JID Innov. 1 (2021) 100018.
[23] C. Caneparo, S. Chabaud, J. Fradette, S. Bolduc, Evaluation of a Serum-Free Medium for Human Epithelial and Stromal Cell Culture, Int J Mol Sci. 23 (2022) 10035.
[24] C. Caneparo, S. Chabaud, J. Fradette, S. Bolduc, Evaluation of a Serum-Free Medium for Human Epithelial and Stromal Cell Culture, Int J Mol Sci. 23 (2022) 10035.
[25] S. Syrjänen, K. Syrjänen, HPV-associated benign squamous cell papillomas in the upper aero-digestive tract and their
malignant potential. Viruses. 13(2021) 1624.
[26] L.T. Chow, T.R. Broker, B.M. Steinberg, The natural history of human papillomavirus infections of the mucosal epithelia, Apmis. 118 (2010) 422–449.
[27] E. Odell, O. Kujan, S. Warnakulasuriya, P. Sloan, Oral epithelial dysplasia: Recognition, grading and clinical significance, Oral Dis. 27(8) (2021) 1947-1976.
[28] S. Syrjänen, K. Syrjänen, HPV-associated benign squamous cell papillomas in the upper aero-digestive tract and their
malignant potential, Viruses. 13 (2021) 1624.
[29] J.W. Kreider, K. Balogh, R.O. Olson, J.C. Martin, Treatment of latent rabbit and human papillomavirus infections with 9-(2- phosphonylmethoxy) ethylguanine (PMEG), Antiviral Res. 14 (1990) 51–58.
[30] A.T. Slominski, T.-K. Kim, Z. Janjetovic, A.A. Bro
żyna, M.A. Żmijewski, H. Xu, T.R. Sutter, R.C. Tuckey, A.M. Jetten,
D.K. Crossman, Differential and overlapping effects of 20, 23 (OH) 2D3 and 1, 25 (OH) 2D3 on gene expression in human
epidermal keratinocytes: identification of AhR as an alternative receptor for 20, 23 (OH) 2D3, Int J Mol Sci. 19 (2018) 3072.
[31] P.L. Villa, R. Jackson, S. Eade, N. Escott, I. Zehbe, Isolation of biopsy-derived, human cervical keratinocytes propagated as monolayer and organoid cultures, Sci Rep. 8 (2018) 1–10.
[32] S. Chatterjee, S. do Kang, S. Alam, A.C. Salzberg, J. Milici, S.H. van der Burg, W. Freeman, C. Meyers, Tissue-specific gene expression during productive human papillomavirus 16 infection of cervical, foreskin, and tonsil epithelium, J Virol. 93 (2019) e00915-19.
[33] C. Hirsch, S. Schildknecht, In vitro research reproducibility: Keeping up high standards, Front Pharmacol. 10 (2019) 1484.
[34] D. Khorsandi, S. Palacios, Y. Gaslain, C. Emsellem, J. Combalia, J. Cortés, A. Khademhosseini, P159 Human uterine cervixon-a-chip: establishing the first in vitro model to study the development of cervical carcinoma and human papiloma virus mechanism of action, 29 (2019) 1-10.
[35] I. Cadena, A. Chen, A. Arvidson, K.C. Fogg, Biomaterial strategies to replicate gynecological tissue, Biomater Sci. 9 (2021) 1117–1134.
[36] J.W. Haycock, 3D cell culture: a review of current approaches and techniques, 3D Cell Culture. (2011) 1–15.
[37] D. Huh, G.A. Hamilton, D.E. Ingber, From 3D cell culture to organs-on-chips, Trends Cell Biol. 21 (2011) 745–754.
[38]O.A.G. Tantengco, L.S. Richardson, P.M.B. Medina, A. Han, R. Menon, Organ
onchip of the cervical epithelial layer: A
platform to study normal and pathological cellular remodeling of the cervix, The FASEB Journal. 35 (2021) e21463.
[39] V. Mancini, V. Pensabene, Organs-on-chip models of the female reproductive system, Bioengineering. 6 (2019) 103.
[40] J.C. Haderspeck, J. Chuchuy, S. Kustermann, S. Liebau, P. Loskill, Organ-on-a-chip technologies that can transform
ophthalmic drug discovery and disease modeling, Expert Opin Drug Discov. 14 (2019) 47–57.
[41] P. Dey, Handbook of Cervical Cytology: Special Emphasis on Liquid Based Cytology, JP Medical Ltd, 2018.
[42] P.G. Voojis, A.J.M. van Aspert-van Erp, J. Bulten, M. Bibbo, D. Wilbur, Benign proliferative reactions, intraepithelial
neoplasia, and invasive cancer of the uterine cervix, Comprehensive Cytopathology. 3rd Edition. Philadelphia: Saunders
Elsevier. (2008) 131–212.
[43] N. C. Ellstrand, K. A. Chierenbeck, Hybridization as a stimulus for the evolution of invasiveness in plants? Colloquium 97 (2000) 7043-7050.
[44] S. Regauer, O. Reich, The origin of Human Papillomavirus (HPV)—induced cervical squamous cancer, Curr Opin Virol. 51 (2021) 111–118.
[45] J. Doorbar, H. Griffin, Refining our understanding of cervical neoplasia and its cellular origins, Papillomavirus Res. 7 (2019) 176–179.
[46] I. Pavlidis, O.B. Spiller, G. Sammut Demarco, H. MacPherson, S.E.M. Howie, J.E. Norman, S.J. Stock, Cervical epithelial
damage promotes Ureaplasma parvum ascending infection, intrauterine inflammation and preterm birth induction in mice, Nat Commun. 11 (2020) 1–12.
[47] O.A.G. Tantengco, L.S. Richardson, P.M.B. Medina, A. Han, R. Menon, Organ
onchip of the cervical epithelial layer: A
platform to study normal and pathological cellular remodeling of the cervix, The FASEB Journal. 35 (2021) e21463.
[48] S.-X. Yu, Y. Liu, Y. Wu, H. Luo, R. Huang, Y.-J. Wang, X. Wang, H. Gao, H. Shi, G. Jing, Cervix chip mimicking cervical
microenvironment for quantifying sperm locomotion, Biosens Bioelectron. 204 (2022) 114040.