[1] M.H. Mat Zaid, J. Abdullah, N. Rozi, A.A. Mohamad Rozlan, S. Abu Hanifah, A sensitive impedimetric aptasensor based on carbon nanodots modified electrode for detection of 17ß-estradiol, Nanomaterials 10(7) (2020) 1346.
[2] A.Z. Aris, A.S. Shamsuddin, S.M. Praveena, Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on
exposed biota: a review, Environment international 69 (2014) 104-119.
[3] K. Rehberger, E.W. von Siebenthal, C. Bailey, P. Bregy, M. Fasel, E.L. Herzog, S. Neumann, H. Schmidt-Posthaus, H. Segner, Long-term exposure to low 17α-EE (EE2) concentrations disrupts both the reproductive and the immune system of juvenile rainbow trout, Oncorhynchus mykiss, Environment international 142 (2020) 105836.
[4] D.L.d. Cunha, S.M.C.d. Silva, D.M. Bila, J.L.d.M. Oliveira, P.d.N. Sarcinelli, A.L. Larentis, Regulation of the synthetic
estrogen 17α-EE in water bodies in Europe, the United States, and Brazil, Cadernos de saude publica 32 (2016) e00056715.
[5] M.L. Scala-Benuzzi, J. Raba, G.J. Soler-Illia, R.J. Schneider, G.A. Messina, Novel electrochemical paper-based immunocapture assay for the quantitative determination of EE in water samples, Analytical chemistry 90(6) (2018) 4104-4111.
[6] M. Nodehi, M. Baghayeri, R. Ansari, H. Veisi, Electrochemical quantification of 17α–EE in biological samples using a
Au/Fe3O4@ TA/MWNT/GCE sensor, Materials Chemistry and Physics 244 (2020) 122687.
[7] A.M. Santos, A. Wong, T.M. Prado, E.L. Fava, O. Fatibello-Filho, M.D. Sotomayor, F.C. Moraes, Voltammetric determination of EE using screen-printed electrode modified with functionalized graphene, graphene quantum dots and magnetic nanoparticles coated with molecularly imprinted polymers, Talanta 224 (2021) 121804.
[8] L.R. Silva, J.G. Rodrigues, J.P. Franco, L.P. Santos, E. D'Elia, W. Romão, R.d.Q. Ferreira, Development of a portable
electroanalytical method using nickel modified screen-printed carbon electrode for EE determination in organic fertilizers,
Ecotoxicology and Environmental Safety 208 (2021) 111430.
[9] P.M. Zagalo, P.A. Ribeiro, M. Raposo, Detecting Traces of 17α-EE in Complex Water Matrices, Sensors 20(24) (2020) 7324.
[10] C. Zhang, M. Cui, J. Ren, Y. Xing, N. Li, H. Zhao, P. Liu, X. Ji, M. Li, Facile synthesis of novel spherical covalent organic
frameworks integrated with Pt nanoparticles and multiwalled carbon nanotubes as electrochemical probe for tanshinol drug detection, Chemical Engineering Journal 401 (2020) 126025.
[11] M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications, science 339(6119) (2013) 535-539.
[12] S.M. Ghoreishi, M. Behpour, F.S. Ghoreishi, S. Mousavi, Voltammetric determination of tryptophan in the presence of uric acid and dopamine using carbon paste electrode modified with multi-walled carbon nanotubes, Arabian Journal of Chemistry 10 (2017) S1546-S1552.
[13] C. Li, Voltammetric determination of EE at a carbon paste electrode in the presence of cetyl pyridine bromine,
Bioelectrochemistry 70(2) (2007) 263-268.
[14] J. Smajdor, R. Piech, M. Ławrywianiec, B. Paczosa-Bator, GCE modified with carbon black for sensitive estradiol
determination by means of voltammetry and flow injection analysis with amperometric detection, Analytical biochemistry 544 (2018) 7-12.
[15] H. El-Desoky, M. Abdel-Galeil, A. Khalifa, Mesoporous SiO2 (SBA-15) modified graphite electrode as highly sensitive sensor for ultra trace level determination of Dapoxetine hydrochloride drug in human plasma, Journal of Electroanalytical Chemistry 846 (2019) 113157.
[16] M. Baghayeri, A. Sedrpoushan, A. Mohammadi, M. Heidari, A non-enzymatic glucose sensor based on NiO
nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode, Ionics 23(6) (2017) 1553-1562.
[17] R. Mirzajani, S. Karimi, Preparation of γ-Fe2O3/hydroxyapatite/Cu (II) magnetic nanocomposite and its application for
electrochemical detection of metformin in urine and pharmaceutical samples, Sensors and Actuators B: Chemical 270 (2018) 405-416.
[18] A.K. Attia, W.M. Salem, M.A. Mohamed, Voltammetric assay of metformin hydrochloride using pyrogallol modified carbon paste electrode, Acta Chimica Slovenica 62(3) (2015) 588-594.
[19] X. Li, L. Zhang, X. Dong, J. Liang, J. Shi, Preparation of mesoporous calcium doped silica spheres with narrow size dispersion and their drug loading and degradation behavior, Microporous and Mesoporous Materials 102(1-3) (2007) 151-158.
[20] F. Qu, G. Zhu, S. Huang, S. Li, J. Sun, D. Zhang, S. Qiu, Controlled release of Captopril by regulating the pore size and
morphology of ordered mesoporous silica, Microporous and Mesoporous Materials 92(1-3) (2006) 1-9.
[21] M. Sadeghi, F. Shiri, D. Kordestani, P. Mohammadi, A. Alizadeh, SBA-15/Metformin as a novel sorbent combined with
surfactant-assisted dispersive liquid–liquid microextraction (SA-DLLME) for highly sensitive determination of Pb, Cd and Ni in food and environmental samples, Journal of the Iranian Chemical Society 15(4) (2018) 753-768.
[22] A. Alizadeh, M. Khodaei, D. Kordestania, M. Beygzadeh, A biguanide/Pd-decorated SBA-15 hybrid nanocomposite:
Synthesis, characterization and catalytic application, Journal of Molecular Catalysis A: Chemical 372 (2013) 167-174.
[23] M. Arvand, T.M. Gholizadeh, M.A. Zanjanchi, MWCNTs/Cu (OH) 2 nanoparticles/IL nanocomposite modified GCE as a
voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac, Materials Science and
Engineering: C 32(6) (2012) 1682-1689.
[24] B. He, W.-B. Chen, Voltammetric Determination of Sulfonamides with a Modified GCE Using Carboxyl Multiwalled Carbon Nanotubes, Journal of the Brazilian Chemical Society 27 (2016) 2216-2225.
[25] J.P. Trigueiro, G.G. Silva, F.V. Pereira, R.L. Lavall, Layer-by-layer assembled films of multi-walled carbon nanotubes with chitosan and cellulose nanocrystals, J Colloid Interface Sci 432 (2014) 214-20.
[26] N.A. Martínez, S.V. Pereira, F.A. Bertolino, R.J. Schneider, G.A. Messina, J. Raba, Electrochemical detection of a powerful estrogenic endocrine disruptor: EE in water samples through bioseparation procedure, Anal Chim Acta 723 (2012) 27-32.
[27] C. Li, Voltammetric determination of EE at a carbon paste electrode in the presence of cetyl pyridine bromine,
Bioelectrochemistry 70(2) (2007) 263-8.
[28] C. Perez, F. Ruiz Simões, L. Codognoto, Voltammetric determination of 17α-EE hormone in supply dam using BDD electrode, Journal of Solid State Electrochemistry 20 (2016).
[29] T.M. Prado, F.H. Cincotto, F.C. Moraes, S.A.S. Machado, Electrochemical Sensor-Based Ruthenium Nanoparticles on
Reduced Graphene Oxide for the Simultaneous Determination of EE and Amoxicillin, Electroanalysis 29(5) (2017) 1278-1285.
[30] F.C. Moraes, B. Rossi, M.C. Donatoni, K.T. de Oliveira, E.C. Pereira, Sensitive determination of 17β-estradiol in river water
using a graphene based electrochemical sensor, Anal Chim Acta 881 (2015) 37-43.
[31] J. Smajdor, R. Piech, M. Ławrywianiec, B. Paczosa-Bator, GCE modified with carbon black for sensitive estradiol
determination by means of voltammetry and flow injection analysis with amperometric detection, Anal Biochem 544 (2018) 7-12.
[32] B.C. Janegitz, F.A. dos Santos, R.C. Faria, V. Zucolotto, Electrochemical determination of estradiol using a thin film
containing reduced graphene oxide and dihexadecylphosphate, Mater Sci Eng C Mater Biol Appl 37 (2014) 14-9.