Modified Glassy Carbon Electrode with Mesoporous Silica-Metformin/Multi-Walled Carbon Nanotubes as a Biosensor for Ethinylestradiol Detection

Document Type : Original Article

Authors

1 Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran

2 Shahid Izadi Conservatory, Sabzevar, Iran

Abstract

The aim of this study was related to the determination of ethinylestradiol (EE) via electrochemical methods. Since the EE determination has approximately been impossible at low concentrations, the glassy carbon electrode (GCE) was modified with a mixture of metformin (MET), mesoporous silica (SBA-15), and multi-walled carbon nanotubes (MWCNT). Due to the high existence of the NH2 functional group in MET, this material can act as a modifier by creating a chemical bond by adsorption in SBA nanoparticles, and it subsequently can measure EE. Experimental investigations have shown that the modified electrode has had a repeatable response toward EE evaluation in real samples. Moreover, the physicochemical properties of the manufactured electrode were investigated via FT-IR, field-emission scanning electron microscopy (FESEM), and transmission electron microscope (TEM). Also, the electrochemical characteristics were studied through cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods. The related result has indicated a considerable increment in current intensity. At optimal conditions, the modified electrode demonstrated linear voltammetric responses in the ranges of 0.005-200 µM and a low detection limit of 1.68×10-9 M for EE estimation.

Graphical Abstract

Modified Glassy Carbon Electrode with Mesoporous Silica-Metformin/Multi-Walled Carbon Nanotubes as a Biosensor for Ethinylestradiol Detection

Keywords


 [1] M.H. Mat Zaid, J. Abdullah, N. Rozi, A.A. Mohamad Rozlan, S. Abu Hanifah, A sensitive impedimetric aptasensor based on carbon nanodots modified electrode for detection of 17ß-estradiol, Nanomaterials 10(7) (2020) 1346.
[2] A.Z. Aris, A.S. Shamsuddin, S.M. Praveena, Occurrence of 17
α-ethynylestradiol (EE2) in the environment and effect on
exposed biota: a review, Environment international 69 (2014) 104-119.
[3] K. Rehberger, E.W. von Siebenthal, C. Bailey, P. Bregy, M. Fasel, E.L. Herzog, S. Neumann, H. Schmidt-Posthaus, H. Segner, Long-term exposure to low 17
α-EE (EE2) concentrations disrupts both the reproductive and the immune system of juvenile rainbow trout, Oncorhynchus mykiss, Environment international 142 (2020) 105836.
[4] D.L.d. Cunha, S.M.C.d. Silva, D.M. Bila, J.L.d.M. Oliveira, P.d.N. Sarcinelli, A.L. Larentis, Regulation of the synthetic
estrogen 17
α-EE in water bodies in Europe, the United States, and Brazil, Cadernos de saude publica 32 (2016) e00056715.
[5] M.L. Scala-Benuzzi, J. Raba, G.J. Soler-Illia, R.J. Schneider, G.A. Messina, Novel electrochemical paper-based immunocapture assay for the quantitative determination of EE in water samples, Analytical chemistry 90(6) (2018) 4104-4111.
[6] M. Nodehi, M. Baghayeri, R. Ansari, H. Veisi, Electrochemical quantification of 17
α–EE in biological samples using a
Au/Fe
3O4@ TA/MWNT/GCE sensor, Materials Chemistry and Physics 244 (2020) 122687.
[7] A.M. Santos, A. Wong, T.M. Prado, E.L. Fava, O. Fatibello-Filho, M.D. Sotomayor, F.C. Moraes, Voltammetric determination of EE using screen-printed electrode modified with functionalized graphene, graphene quantum dots and magnetic nanoparticles coated with molecularly imprinted polymers, Talanta 224 (2021) 121804.
[8] L.R. Silva, J.G. Rodrigues, J.P. Franco, L.P. Santos, E. D'Elia, W. Romão, R.d.Q. Ferreira, Development of a portable
electroanalytical method using nickel modified screen-printed carbon electrode for EE determination in organic fertilizers,
Ecotoxicology and Environmental Safety 208 (2021) 111430.
[9] P.M. Zagalo, P.A. Ribeiro, M. Raposo, Detecting Traces of 17
α-EE in Complex Water Matrices, Sensors 20(24) (2020) 7324.
[10] C. Zhang, M. Cui, J. Ren, Y. Xing, N. Li, H. Zhao, P. Liu, X. Ji, M. Li, Facile synthesis of novel spherical covalent organic
frameworks integrated with Pt nanoparticles and multiwalled carbon nanotubes as electrochemical probe for tanshinol drug detection, Chemical Engineering Journal 401 (2020) 126025.
[11] M.F. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications, science 339(6119) (2013) 535-539.
[12] S.M. Ghoreishi, M. Behpour, F.S. Ghoreishi, S. Mousavi, Voltammetric determination of tryptophan in the presence of uric acid and dopamine using carbon paste electrode modified with multi-walled carbon nanotubes, Arabian Journal of Chemistry 10 (2017) S1546-S1552.
[13] C. Li, Voltammetric determination of EE at a carbon paste electrode in the presence of cetyl pyridine bromine,
Bioelectrochemistry 70(2) (2007) 263-268.
[14] J. Smajdor, R. Piech, M. Ławrywianiec, B. Paczosa-Bator, GCE modified with carbon black for sensitive estradiol
determination by means of voltammetry and flow injection analysis with amperometric detection, Analytical biochemistry 544 (2018) 7-12.
[15] H. El-Desoky, M. Abdel-Galeil, A. Khalifa, Mesoporous SiO2 (SBA-15) modified graphite electrode as highly sensitive sensor for ultra trace level determination of Dapoxetine hydrochloride drug in human plasma, Journal of Electroanalytical Chemistry 846 (2019) 113157.
[16] M. Baghayeri, A. Sedrpoushan, A. Mohammadi, M. Heidari, A non-enzymatic glucose sensor based on NiO
nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode, Ionics 23(6) (2017) 1553-1562.
[17] R. Mirzajani, S. Karimi, Preparation of γ-Fe2O3/hydroxyapatite/Cu (II) magnetic nanocomposite and its application for
electrochemical detection of metformin in urine and pharmaceutical samples, Sensors and Actuators B: Chemical 270 (2018) 405-416.
[18] A.K. Attia, W.M. Salem, M.A. Mohamed, Voltammetric assay of metformin hydrochloride using pyrogallol modified carbon paste electrode, Acta Chimica Slovenica 62(3) (2015) 588-594.
[19] X. Li, L. Zhang, X. Dong, J. Liang, J. Shi, Preparation of mesoporous calcium doped silica spheres with narrow size dispersion and their drug loading and degradation behavior, Microporous and Mesoporous Materials 102(1-3) (2007) 151-158.
[20] F. Qu, G. Zhu, S. Huang, S. Li, J. Sun, D. Zhang, S. Qiu, Controlled release of Captopril by regulating the pore size and
morphology of ordered mesoporous silica, Microporous and Mesoporous Materials 92(1-3) (2006) 1-9.
[21] M. Sadeghi, F. Shiri, D. Kordestani, P. Mohammadi, A. Alizadeh, SBA-15/Metformin as a novel sorbent combined with
surfactant-assisted dispersive liquid–liquid microextraction (SA-DLLME) for highly sensitive determination of Pb, Cd and Ni in food and environmental samples, Journal of the Iranian Chemical Society 15(4) (2018) 753-768.
[22] A. Alizadeh, M. Khodaei, D. Kordestania, M. Beygzadeh, A biguanide/Pd-decorated SBA-15 hybrid nanocomposite:
Synthesis, characterization and catalytic application, Journal of Molecular Catalysis A: Chemical 372 (2013) 167-174.
[23] M. Arvand, T.M. Gholizadeh, M.A. Zanjanchi, MWCNTs/Cu (OH) 2 nanoparticles/IL nanocomposite modified GCE as a
voltammetric sensor for determination of the non-steroidal anti-inflammatory drug diclofenac, Materials Science and
Engineering: C 32(6) (2012) 1682-1689.
[24] B. He, W.-B. Chen, Voltammetric Determination of Sulfonamides with a Modified GCE Using Carboxyl Multiwalled Carbon Nanotubes, Journal of the Brazilian Chemical Society 27 (2016) 2216-2225.
[25] J.P. Trigueiro, G.G. Silva, F.V. Pereira, R.L. Lavall, Layer-by-layer assembled films of multi-walled carbon nanotubes with chitosan and cellulose nanocrystals, J Colloid Interface Sci 432 (2014) 214-20.
[26] N.A. Martínez, S.V. Pereira, F.A. Bertolino, R.J. Schneider, G.A. Messina, J. Raba, Electrochemical detection of a powerful estrogenic endocrine disruptor: EE in water samples through bioseparation procedure, Anal Chim Acta 723 (2012) 27-32.
[27] C. Li, Voltammetric determination of EE at a carbon paste electrode in the presence of cetyl pyridine bromine,
Bioelectrochemistry 70(2) (2007) 263-8.
[28] C. Perez, F. Ruiz Simões, L. Codognoto, Voltammetric determination of 17
α-EE hormone in supply dam using BDD electrode, Journal of Solid State Electrochemistry 20 (2016).
[29] T.M. Prado, F.H. Cincotto, F.C. Moraes, S.A.S. Machado, Electrochemical Sensor-Based Ruthenium Nanoparticles on
Reduced Graphene Oxide for the Simultaneous Determination of EE and Amoxicillin, Electroanalysis 29(5) (2017) 1278-1285.
[30] F.C. Moraes, B. Rossi, M.C. Donatoni, K.T. de Oliveira, E.C. Pereira, Sensitive determination of 17
β-estradiol in river water
using a graphene based electrochemical sensor, Anal Chim Acta 881 (2015) 37-43.
[31] J. Smajdor, R. Piech, M. Ławrywianiec, B. Paczosa-Bator, GCE modified with carbon black for sensitive estradiol
determination by means of voltammetry and flow injection analysis with amperometric detection, Anal Biochem 544 (2018) 7-12.
[32] B.C. Janegitz, F.A. dos Santos, R.C. Faria, V. Zucolotto, Electrochemical determination of estradiol using a thin film
containing reduced graphene oxide and dihexadecylphosphate, Mater Sci Eng C Mater Biol Appl 37 (2014) 14-9.