[1] A. Zaidi, L. Green, Physiology of hemostasis, Anaesthesia & Intensive Care Medicine. 20 (2019) 152–158.
[2] A.J. Siddon, C.A. Tormey, The chemical and laboratory investigation of hemolysis, Adv Clin Chem. 89 (2019) 215–258.
[3] M.B. Dowling, A. Chaturvedi, I.C. MacIntire, V. Javvaji, J. Gustin, S.R. Raghavan, T.M. Scalea, M. Narayan, Determination
of efficacy of a novel alginate dressing in a lethal arterial injury model in swine, Injury. 47 (2016) 2105–2109.
[4] A. Momeni, M.J. Filiaggi, Degradation and hemostatic properties of polyphosphate coacervates, Acta Biomater. 41 (2016) 328–341.
[5] Z. Ma, G. Bao, J. Li, Multifaceted Design and Emerging Applications of Tissue Adhesives, Adv. Mater. 33 (2021) 2007663.
[6] P. Sharma, A. Kumar, T. Agarwal, A.D. Dey, F.D. Moghaddam, I. Rahimmanesh, M. Ghovvati, S. Yousefiasl, A.
Borzacchiello, A. Mohammadi, V.R. Yella, O. Moradi, E. Sharifi, Nucleic acid-based therapeutics for dermal wound healing,
Int J Biol Macromol. 220 (2022) 920–933.
[7] Garima, T. Agarwal, M. Costantini, S. Pal, A. Kumar, Oxygenation therapies for improved wound healing: current trends and technologies, J. Mater. Chem. B. 10 (2022) 7905–7923.
[8] A.D. Dey, S. Yousefiasl, A. Kumar, F.D. Moghaddam, I. Rahimmanesh, M. Samandari, S. Jamwal, A. Maleki, A. Mohammadi, N. Rabiee, A.C. Paiva-Santos, A. Tamayol, E. Sharifi, P. Makvandi, miRNA-encapsulated abiotic materials and biovectors for cutaneous and oral wound healing: Biogenesis, mechanisms, and delivery nanocarriers, Bioeng. Transl. Med. (2022) e10343.
[9] P. Sharma, A. Kumar, A.D. Dey, Cellular Therapeutics for Chronic Wound healing: Future for Regenerative Medicine, Curr Drug Targets. (2022). https://doi.org/10.2174/138945012309220623144620.
[10] A. Kumar, H. Kaur, Sprayed in-situ synthesis of polyvinyl alcohol/chitosan loaded silver nanocomposite hydrogel for
improved antibacterial effects, Int. J. Bio. Macro. 145 (2020) 950–964.
[11] A. Kumar, T. Behl, S. Chadha, Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects, Int. J. Bio. Macro. 149 (2020) 1262–1274.
[12] B.B. Hsu, W. Conway, C.M. Tschabrunn, M. Mehta, M.B. Perez-Cuevas, S. Zhang, P.T. Hammond, Clotting Mimicry from
Robust Hemostatic Bandages Based on Self-Assembling Peptides, ACS Nano. 9 (2015) 9394–9406.
[13] C. Ghobril, M.W. Grinstaff, The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial, Chem Soc Rev. 44 (2015) 1820–1835.
[14] M.A. Boerman, E. Roozen, M.J. Sánchez-Fernández, A.R. Keereweer, R.P. Félix Lanao, J.C.M.E. Bender, R. Hoogenboom,
S.C. Leeuwenburgh, J.A. Jansen, H. Van Goor, J.C.M. Van Hest, Next Generation Hemostatic Materials Based on NHS-Ester
Functionalized Poly(2-oxazoline)s, Biomacromolecules. 18 (2017) 2529–2538.
[15] S. Pourshahrestani, E. Zeimaran, I. Djordjevic, N.A. Kadri, M.R. Towler, Inorganic hemostats: The state-of-the-art and recent advances, Mater Sci Eng C Mater Biol Appl. 58 (2016) 1255–1268.
[16] L. Jobling, L. Eyre, Haemostasis, blood platelets and coagulation, Anaesthesia & Intensive Care Medicine. 14 (2013) 51–53.
[17] P.A. Cahill, E.M. Redmond, Vascular endothelium - Gatekeeper of vessel health, Atherosclerosis. 248 (2016) 97–109.
[18] N.J. Abbott, A.A.K. Patabendige, D.E.M. Dolman, S.R. Yusof, D.J. Begley, Structure and function of the blood-brain barrier, Neurobiol Dis. 37 (2010) 13–25.
[19] M.J. Fisher, Brain regulation of thrombosis and hemostasis: from theory to practice, Stroke. 44 (2013) 3275–3285.
[20] H. Rasche, Haemostasis and thrombosis: an overview, Eur. Heart. J. Suppl.,3 (2001), Q3–Q7.
[21] S. Palta, R. Saroa, A. Palta, Overview of the coagulation system, Indian J Anaesth. 58 (2014) 515–523.
[22] S.K. Austin, Haemostasis, Medicine. 45 (2017) 204–208.
[23] S.L. Allford, S. Machin, Haemostasis, Surgery (Oxford). 22 (2004) 200a–200d.
[24] E.M. Golebiewska, A.W. Poole, Platelet secretion: From haemostasis to wound healing and beyond, Blood Reviews. 29 (2015) 153–162.
[25] M.C. Berndt, P. Metharom, R.K. Andrews, Primary haemostasis: newer insights, Haemophilia. 20 Suppl 4 (2014) 15–22.
[26] G. Davì, C. Patrono, Platelet activation and atherothrombosis, N Engl J Med. 357 (2007) 2482–2494.
[27] M.J. Quinn, T.V. Byzova, J. Qin, E.J. Topol, E.F. Plow, Integrin αIIbβ3 and Its Antagonism, Arteriosclerosis, Thrombosis,
and Vascular Biology. 23 (2003) 945–952.
[28] L.F. Brass, L. Zhu, T.J. Stalker, Novel Therapeutic Targets at the Platelet Vascular Interface, Arteriosclerosis, Thrombosis,
and Vascular Biology. 28 (2008) s43–s50.
[29] R. Rabieian, M. Boshtam, M. Zareei, S. Kouhpayeh, A. Masoudifar, H. Mirzaei, Plasminogen Activator Inhibitor Type-1 as a Regulator of Fibrosis, J. Cell. Biochem. 119 (2018) 17–27.
[30] C. Zheng, Q. Zeng, S. Pimpi, W. Wu, K. Han, K. Dong, T. Lu, Research status and development potential of composite
hemostatic materials, J. Mater. Chem. B. 8 (2020) 5395–5410.
[31] A. Saini, K. Serrano, K. Koss, L.D. Unsworth, Evaluation of the hemocompatibility and rapid hemostasis of (RADA)4 peptidebased hydrogels, Acta Biomater. 31 (2016) 71–79.
[32] X. Yang, W. Liu, N. Li, M. Wang, B. Liang, I. Ullah, A.L. Neve, Y. Feng, H. Chen, C. Shi, Design and development of
polysaccharide hemostatic materials and their hemostatic mechanism, Biomater. Sci. 5 (2017) 2357–2368.
[33] A.C. Anselmo, C.L. Modery-Pawlowski, S. Menegatti, S. Kumar, D.R. Vogus, L.L. Tian, M. Chen, T.M. Squires, A. Sen
Gupta, S. Mitragotri, Platelet-like Nanoparticles: Mimicking Shape, Flexibility, and Surface Biology of Platelets To Target
Vascular Injuries, ACS Nano. 8 (2014) 11243–11253.
[34] J. Yang, J. Lv, B. Gao, L. Zhang, D. Yang, C. Shi, J. Guo, W. Li, Y. Feng, Modification of polycarbonateurethane surface
with poly (ethylene glycol) monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion, Front. Chem. Sci. Eng. 8 (2014) 188–196.
[35] J. Yang, M. Khan, L. Zhang, X. Ren, J. Guo, Y. Feng, S. Wei, W. Zhang, Antimicrobial surfaces grafted random copolymers
with REDV peptide beneficial for endothelialization, J. Mater. Chem. B. 3 (2015) 7682–7697.
[36] X. Ren, Y. Feng, J. Guo, H. Wang, Q. Li, J. Yang, X. Hao, J. Lv, N. Ma, W. Li, Surface modification and endothelialization
of biomaterials as potential scaffolds for vascular tissue engineering applications, Chem Soc Rev. 44 (2015) 5680–5742.
[37] Y. Bu, L. Zhang, J. Liu, L. Zhang, T. Li, H. Shen, X. Wang, F. Yang, P. Tang, D. Wu, Synthesis and Properties of Hemostatic and Bacteria-Responsive in Situ Hydrogels for Emergency Treatment in Critical Situations, ACS Appl Mater Interfaces. 8 (2016) 12674–12683.
[38] K.M. Lewis, H. Atlee, A. Mannone, L. Lin, A. Goppelt, Efficacy of hemostatic matrix and microporous polysaccharide
hemospheres, J Surg Res. 193 (2015) 825–830.
[39] V. Arul, J.G. Masilamoni, E.P. Jesudason, P.J. Jaji, M. Inayathullah, D.G. Dicky John, S. Vignesh, R. Jayakumar, Glucose
oxidase incorporated collagen matrices for dermal wound repair in diabetic rat models: a biochemical study, J Biomater Appl. 26 (2012) 917–938.
[40] B. Hafemann, S. Ensslen, C. Erdmann, R. Niedballa, A. Zühlke, K. Ghofrani, C.J. Kirkpatrick, Use of a collagen/elastinmembrane for the tissue engineering of dermis1Dedicated to the late Professor Dr. Rolf Hettich.1, Burns. 25 (1999) 373–384.
[41] S. Shahverdi, M. Hajimiri, M.A. Esfandiari, B. Larijani, F. Atyabi, A. Rajabiani, A.R. Dehpour, A.A. Gharehaghaji, R.
Dinarvand, Fabrication and structure analysis of poly(lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications, Int. J. Pharm. 473 (2014) 345–355.
[42] D. Logeart-Avramoglou, J. Jozefonvicz, Carboxymethyl benzylamide sulfonate dextrans (CMDBS), a family of biospecific polymers endowed with numerous biological properties: a review, J Biomed Mater Res. 48 (1999) 578–590.
[43] B.C. Lehtovaara, F.X. Gu, Pharmacological, structural, and drug delivery properties and applications of 1,3-β-glucans, J Agric Food Chem. 59 (2011) 6813–6828.
[44] A. Sathain, P. Monvisade, P. Siriphannon, Bioactive alginate/carrageenan/calcium silicate porous scaffolds for bone tissue engineering, Mater. Today Commun. 26 (2021) 102165.
[45] M.B. Dreifke, N.A. Ebraheim, A.C. Jayasuriya, Investigation of potential injectable polymeric biomaterials for bone
regeneration, J Biomed Mater Res A. 101 (2013) 2436–2447.
[46] R. O’Leary, M. Rerek, E.J. Wood, Fucoidan modulates the effect of transforming growth factor (TGF)-beta1 on fibroblast proliferation and wound repopulation in in vitro models of dermal wound repair, Biol Pharm Bull. 27 (2004) 266–270.
[47] K.R. Kirker, Y. Luo, J.H. Nielson, J. Shelby, G.D. Prestwich, Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing, Biomaterials. 23 (2002) 3661–3671.
[48] P. Kakkar, S. Verma, I. Manjubala, B. Madhan, Development of keratin-chitosan-gelatin composite scaffold for soft tissue engineering, Mater Sci Eng C Mater Biol Appl. 45 (2014) 343–347.
[49] S. El-Sayed, K.H. Mahmoud, A.A. Fatah, A. Hassen, DSC, TGA and dielectric properties of carboxymethyl
cellulose/polyvinyl alcohol blends, Physica B: Condensed Matter. 406 (2011) 4068–4076.
[50] M.S. Agren, U. Ostenfeld, F. Kallehave, Y. Gong, K. Raffn, M.E. Crawford, K. Kiss, A. Friis-Møller, C. Gluud, L.N.
Jorgensen, A randomized, double-blind, placebo-controlled multicenter trial evaluating topical zinc oxide for acute open
wounds following pilonidal disease excision, Wound Repair Regen. 14 (2006) 526–535.
[51] M.B. Dowling, W. Smith, P. Balogh, M.J. Duggan, I.C. MacIntire, E. Harris, T. Mesar, S.R. Raghavan, D.R. King,
Hydrophobically-modified chitosan foam: description and hemostatic efficacy, Journal of Surgical Research. 193 (2015) 316– 323.
[52] J. Ong, A. Clarke, P. White, M.A. Johnson, S. Withey, P.E.M. Butler, Objective evidence for the use of polylactic acid implants in HIV-associated facial lipoatrophy using three-dimensional surface laser scanning and psychological assessment, J Plast Reconstr Aesthet Surg. 62 (2009) 1627–1635.
[53] S.Sharma, P. Sudhakara, J. Singh, R. A. Ilyas, Critical Review of Biodegradable and Bioactive Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications, Polymers (Basel) 13(2021) 2623.
[54] S.N. Chvalun, M.A. Shcherbina, A.N. Yakunin, J. Blackwell, V. Percec, Structure of gyroid mesophase formed by
monodendrons with fluorinated alkyl tails, Polym. Sci. Ser. A. 49 (2007) 158–167.
[55] B. Donnio, D. Guillon, Liquid Crystalline Dendrimers and Polypedes, in: Supramolecular Polymers Polymeric Betains
Oligomers, Springer, Berlin, Heidelberg, 2006: pp. 45–155.
[56] R. Kaup, J.B. ten Hove, A.H. Velders, Dendroids, Discrete Covalently Cross-Linked Dendrimer Superstructures, ACS Nano. 15 (2021) 1666–1674.
[57] B.D. Olsen, S.-Y. Jang, J.M. Lüning, R.A. Segalman, Higher Order Liquid Crystalline Structure in Low-Polydispersity DEHPPV, Macromolecules. 39 (2006) 4469–4479.
[58] S.M. Yu, V.P. Conticello, G. Zhang, C. Kayser, M.J. Fournier, T.L. Mason, D.A. Tirrell, Smectic ordering in solutions and
films of a rod-like polymer owing to monodispersity of chain length, Nature. 389 (1997) 167–170.
[59] J.M. Smeenk, M.B.J. Otten, J. Thies, D.A. Tirrell, H.G. Stunnenberg, J.C.M. van Hest, Controlled Assembly of
Macromolecular β-Sheet Fibrils, Angew. Chem. Int. Ed. 44 (2005) 1968–1971.
[60] Y. Yamamoto, Y. Tsutsumi, Y. Yoshioka, T. Nishibata, K. Kobayashi, T. Okamoto, Y. Mukai, T. Shimizu, S. Nakagawa, S.
Nagata, T. Mayumi, Site-specific PEGylation of a lysine-deficient TNF-alpha with full bioactivity, Nat Biotechnol. 21 (2003)
546–552.
[61] D. Cunliffe, S. Pennadam, C. Alexander, Synthetic and biological polymers - Merging the interface, Eur. Polym. J. 40 (2004) 5–25.
[62] K.D. Jensen, A. Nori, M. Tijerina, P. Kopecková, J. Kopecek, Cytoplasmic delivery and nuclear targeting of synthetic
macromolecules, J Control Release. 87 (2003) 89–105.
[63] W. Cheng, J. He, M. Chen, D. Li, H. Li, L. Chen, Y. Cao, J. Wang, Y. Huang, Preparation, functional characterization and
hemostatic mechanism discussion for oxidized microcrystalline cellulose and its composites, Fibers Polym. 17 (2016) 1277– 1286.
[64] J.T. Correll, E.C. Wise, Certain Properties of a New Physiologically Absorbable Sponge, Proc. Soc. Exp. Biol. Med. 58 (1945) 233–235.
[65] R.I. Litvinov, M. Pieters, Z. de Lange-Loots, J.W. Weisel, Fibrinogen and Fibrin, in: J.R. Harris, J. Marles-Wright (Eds.),
Macromolecular Protein Complexes III: Structure and Function, Springer International Publishing, Cham, 2021: pp. 471–501.
[66] M.R. Hait, C.A. Robb, C.R. Baxter, A.R. Borgmann, L.O. Tippett, Comparative evaluation of Avitene microcrystalline
collagen hemostat in experimental animal wounds, Am J Surg. 125 (1973) 284–287.
[67] K.H. Waibel, B. Haney, M. Moore, B. Whisman, R. Gomez, Safety of chitosan bandages in shellfish allergic patients, Mil
Med. 176 (2011) 1153–1156.
[68] M.A. Warner, S.E. Shields, C.G. Chute, Major morbidity and mortality within 1 month of ambulatory surgery and anesthesia,
JAMA. 270 (1993) 1437–1441.
[69] R.H. Fortelny, A.H. Petter-Puchner, K.S. Glaser, H. Redl, Use of fibrin sealant (Tisseel/Tissucol) in hernia repair: a systematic review, Surg Endosc. 26 (2012) 1803–1812.
[70] D.E. Milkes, S. Friedland, O.S. Lin, T.R. Reid, R.M. Soetikno, A novel method to control severe upper GI bleeding from
metastatic cancer with a hemostatic sealant: the CoStasis surgical hemostat, Gastrointest Endosc. 55 (2002) 735–740.
[71] J.K. Allotey, A.H. King, N.H. Kumins, V.L. Wong, K.C. Harth, J.S. Cho, V.S. Kashyap, Systematic review of hemostatic
agents used in vascular surgery, J. Vasc. Surg. 73 (2021) 2189–2197.
[72] S. Krishnan, T.M. Conner, R. Leslie, S. Stemkowski, A. Shander, Choice of hemostatic agent and hospital length of stay in cardiovascular surgery, Semin Cardiothorac Vasc Anesth. 13 (2009) 225–230.
[73] H. Azargoon, B.J. Williams, E.S. Solomon, H.P. Kessler, J. He, R. Spears, Assessment of hemostatic efficacy and osseous
wound healing using HemCon dental dressing, J Endod. 37 (2011) 807–811.
[74] F.A. Herrera, C.K. Lee, G. Kryger, J. Roostaeian, B. Safa, R.F. Lohman, L.J. Gottlieb, R.L. Walton, Microsurgery in the
hypercoagulable patient: review of the literature, J Reconstr Microsurg. 28 (2012) 305–312.
[75] A.J. Boulton, C.T. Lewis, D.N. Naumann, M.J. Midwinter, Prehospital haemostatic dressings for trauma: a systematic review, Emerg Med J. 35 (2018) 449–457.
[76] K. Broos, H.B. Feys, S.F. De Meyer, K. Vanhoorelbeke, H. Deckmyn, Platelets at work in primary hemostasis, Blood Rev.
25 (2011) 155–167.
[77] J.M. Kärkkäinen, Acute Mesenteric Ischemia: A Challenge for the Acute Care Surgeon, Scand J Surg. 110 (2021) 150–158.
[78] S. Acosta, M. Wadman, I. Syk, S. Elmståhl, O. Ekberg, Epidemiology and prognostic factors in acute superior mesenteric artery occlusion, J Gastrointest Surg. 14 (2010) 628–635.
[79] K.J. Zehr, Use of bovine albumin-glutaraldehyde glue in cardiovascular surgery, Ann Thorac Surg. 84 (2007) 1048–1052.
[80] C. Liu, X. Liu, C. Liu, N. Wang, H. Chen, W. Yao, G. Sun, Q. Song, W. Qiao, A highly efficient, in situ wet-adhesive dextran derivative sponge for rapid hemostasis, Biomaterials. 205 (2019) 23–37.
[81] X. Yang, W. Liu, N. Li, M. Wang, B. Liang, I. Ullah, A.L. Neve, Y. Feng, H. Chen, C. Shi, Design and development of
polysaccharide hemostatic materials and their hemostatic mechanism, Biomater. Sci. 5 (2017) 2357–2368.
[82] G. Lan, Q. Li, F. Lu, K. Yu, B. Lu, R. Bao, F. Dai, Improvement of platelet aggregation and rapid induction of hemostasis in chitosan dressing using silver nanoparticles, Cellulose. 27(2020) 385-400.
[83] X. Li, Y.-C. Li, M. Chen, Q. Shi, R. Sun, X. Wang, Chitosan/rectorite nanocomposite with injectable functionality for skin
hemostasis, J. Mater. Chem. B. 6 (2018) 6544–6549.
[84] C. Zheng, Q. Zeng, S. Pimpi, W. Wu, K. Han, K. Dong, T. Lu, Research status and development potential of composite
hemostatic materials, J. Mater. Chem. B. 8 (2020) 5395–5410.
[85] J. Zhang, S. Xue, X. Zhu, Y. Zhao, Y. Chen, J. Tong, X. Shi, Y. Du, Z. Zhong, Q. Ye, Emerging chitin nanogels/rectorite
nanocomposites for safe and effective hemorrhage control, J. Mater. Chem. B. 7 (2019) 5096–5103.
[86] J. Yu, H. Su, S. Wei, F. Chen, C. Liu, Calcium content mediated hemostasis of calcium-modified oxidized microporous starch, J. Biomater. Sci. Polym. Ed. 29 (2018) 1716–1728.
[87] C. Zheng, Q. Zeng, S. Pimpi, W. Wu, K. Han, K. Dong, T. Lu, Research status and development potential of composite
hemostatic materials, J. Mater. Chem. B. 8 (2020) 5395–5410.
[88] X. Yang, W. Liu, N. Li, M. Wang, B. Liang, I. Ullah, A.L. Neve, Y. Feng, H. Chen, C. Shi, Design and development of
polysaccharide hemostatic materials and their hemostatic mechanism, Biomater. Sci. 5 (2017) 2357–2368.
[89] J. Liu, F. Lu, H. Chen, R. Bao, Z. Li, B. Lu, K. Yu, F. Dai, D. Wu, G. Lan, Healing of skin wounds using a new cocoon
scaffold loaded with platelet-rich or platelet-poor plasma, RSC Adv. 7 (2017) 6474–6485.
[90] P.C. Kavitha Sankar, G. Rajmohan, M.J. Rosemary, Physico-chemical characterisation and biological evaluation of freeze dried chitosan sponge for wound care, Materials Letters. 208 (2017) 130–132.
[91] H. Hattori, M. Ishihara, Development of Mucoadhesive Chitosan Derivatives for Use as Submucosal Injections, Polymers (Basel). 10 (2018) 410.
[92] X. Yang, W. Liu, N. Li, M. Wang, B. Liang, I. Ullah, A.L. Neve, Y. Feng, H. Chen, C. Shi, Design and development of
polysaccharide hemostatic materials and their hemostatic mechanism, Biomater. Sci. 5 (2017) 2357–2368.
[93] Y. Chen, Y. Zhang, F. Wang, W. Meng, X. Yang, P. Li, J. Jiang, H. Tan, Y. Zheng, Preparation of porous carboxymethyl
chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing, Mater Sci Eng C Mater Biol Appl. 63 (2016) 18–29.
[94] M. Nieto-Suárez, M.A. López-Quintela, M. Lazzari, Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly, Carbohydr Polym. 141 (2016) 175–183.
[95] Swelling and Reswelling Characteristics of Cross-Linked Poly(vinyl alcohol)/Chitosan Hydrogel Film: Journal of Dispersion Science and Technology: Vol 32, No 9, (n.d.).
[96] T.C. Yadav, A.K. Srivastava, N. Raghuwanshi, N. Kumar, R. Prasad, V. Pruthi, Wound Healing Potential of Natural Polymer: Chitosan “A Wonder Molecule,” in: Integrating Green Chemistry and Sustainable Engineering, John Wiley & Sons, Ltd, 2019: pp. 527–579.
[97] P. Fonte, S. Reis, B. Sarmento, Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery, J Control. Rel. 225 (2016) 75–86.
[98] H. Li, F. Cheng, S. Gao, Z. Wu, L. Dong, S. Lin, Z. Luo, X. Li, Preparation, characterization, antibacterial properties, and
hemostatic evaluation of ibuprofen-loaded chitosan/gelatin composite films, J. Appl Polym. Sci. 134 (2017) 45441.
[99] T. Liebert, S. Hornig, S. Hesse, T. Heinze., Nanoparticles on the basis of highly functionalized dextrans, J. Am. Chem. Soc.127(2005)10484-5.
[100] S. Hornig, T. Liebert, T. Heinze, Structure design of multifunctional furoate and pyroglutamate esters of dextran by polymeranalogous reactions, Macromol Biosci. 7 (2007) 297–306.
[101] T. Heinze, T. Liebert, B. Heublein, S. Hornig. Functional Polymers Based on Dextran. In: Klemm, D. (eds) Polysaccharides II. Adv. Polym. Sci. 205 (2006). Springer, Berlin, Heidelberg.
[102] Q. Escartin, C. Lallam-Laroye, B. Baroukh, F.O. Morvan, J.P. Caruelle, G. Godeau, D. Barritault, J.L. Saffar, A new
approach to treat tissue destruction in periodontitis with chemically modified dextran polymers, FASEB J. 17 (2003) 644–
651.
[103] F. Xiao, C. Nicholson, J. Hrabe, S. Hrabetová, Diffusion of flexible random-coil dextran polymers measured in anisotropic brain extracellular space by integrative optical imaging, Biophys J. 95 (2008) 1382–1392.
[104] T.T. Nielsen, V. Wintgens, C. Amiel, R. Wimmer, K.L. Larsen, Facile synthesis of beta-cyclodextrin-dextran polymers by “click” chemistry, Biomacromolecules. 11 (2010) 1710–1715.
[105] J.G. Clay, D. Zierold, K. Grayson, F.D. Battistella, Dextran polymer hemostatic dressing improves survival in liver injury
model, J Surg Res. 155 (2009) 89–93.
[106] J.L. Degen, J.S. Palumbo, Hemostatic factors, innate immunity and malignancy, Thrombosis Research. 129 (2012) S1–S5.
[107] C. Liu, X. Liu, C. Liu, N. Wang, H. Chen, W. Yao, G. Sun, Q. Song, W. Qiao, A highly efficient, in situ wet-adhesive dextran derivative sponge for rapid hemostasis, Biomaterials. 205 (2019) 23–37.
[108] M.M. Glowaski, P.F. Moon–Massat, H.N. Erb, S.C. Barr, Effects of oxypolygelatin and dextran 70 on hemostatic variables in dogs, Veterinary Anaesthesia and Analgesia. 30 (2003) 202–210.
[109] J.-Y. Liu, Y. Li, Y. Hu, G. Cheng, E. Ye, C. Shen, F.-J. Xu, Hemostatic porous sponges of cross-linked hyaluronic
acid/cationized dextran by one self-foaming process, Mater Sci Eng C Mater Biol Appl. 83 (2018) 160–168.
[110] F. Chaubet, J. Champion, O. Maïga, S. Mauray, J. Jozefonvicz, Synthesis and structure—anticoagulant property relationships of functionalized dextrans: CMDBS, Carbohydr. Polym. 28 (1995) 145–152.
[111] M.W. Rampling, Interactions between dextran, fibrinogen and plasma membranes, Biochem. Pharmacol. 25 (1976) 751– 752.
[112] M. Åberg, U. Hedner, S.-E. Bergentz, Effect of dextran 70 on factor VIII and platelet function in von Willebrand’s disease, Thromb. Res. 12 (1978) 629–634.
[113] M. Xu, X. Wang, Y. Yan, R. Yao, Y. Ge, An cell-assembly derived physiological 3D model of the metabolic syndrome,
based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix, Biomaterials. 31 (2010) 3868–3877.
[114] J. Grzesiak, J. Kolankowski, K. Marycz, Osteogenic Differentiation of Canine Adipose Stem Cells Cultured in AlginateFibrin-Based Hydrogel, J. Biomater. Tissue Eng. 5 (2015) 703–710.
[115] M.G. Antoniraj, C.S. Kumar, R. Kandasamy, Synthesis and characterization of poly (N-isopropylacrylamide)-gcarboxymethyl chitosan copolymer-based doxorubicin-loaded polymeric nanoparticles for thermoresponsive drug release. Colloid. Polym. Sci. 294 (2016)527–535.
[116] S.A. Kale, V.H. Bajaj, An optimization study of rifampicin oral suspension formulation using central composite design of experiment model, Pharma. Innovation 5(2016)11-17.
[117] E.M. Bachelder, E.N. Pino, K.M. Ainslie, Acetalated Dextran: A Tunable and Acid-Labile Biopolymer with Facile Synthesis and a Range of Applications, Chem Rev. 117 (2017) 1915–1926.
[118] N. Chen, M.A. Collier, M.D. Gallovic, G.C. Collins, C.C. Sanchez, E.Q. Fernandes, E.M. Bachelder, K.M. Ainslie,
Degradation of acetalated dextran can be broadly tuned based on cyclic acetal coverage and molecular weight, Int J Pharm. 512 (2016) 147–157.
[119] H. Zhou, H.H.K. Xu, The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering, Biomaterials. 32 (2011) 7503–7513.
[120] K. Ma, A.L. Titan, M. Stafford, C. hua Zheng, M.E. Levenston, Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels, Acta Biomater. 8 (2012) 3754–3764.
https://doi.org/10.1016/j.actbio.2012.06.028.
[121] M.C. Serrano, M.C. Gutiérrez, F. del Monte, Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications, Prog. Polym. Sci. 7 (2014) 1448–1471.
[122] L. Zheng, X. Jiang, X. Chen, H. Fan, X. Zhang, Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering, Biomed Mater. 9 (2014) 065004.
[123] G. Montalbano, S. Toumpaniari, A. Popov, P. Duan, J. Chen, K. Dalgarno, W.E. Scott, A.M. Ferreira, Synthesis of
bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering, Mater. Sci. Eng. C. 91 (2018) 236–246.
[124] M. Bongio, S. Lopa, M. Gilardi, S. Bersini, M. Moretti, A 3D vascularized bone remodeling model combining osteoblasts and osteoclasts in a CaP nanoparticle-enriched matrix, Nanomedicine (Lond). 11 (2016) 1073–1091.
[125] I.R. Matthew, R.M. Browne, J.W. Frame, B.G. Millar, Tissue response to a haemostatic alginate wound dressing in tooth extraction sockets, Br. J. of Oral Maxillofac. Surg. 31 (1993) 165–169.
[126] S.D. Blair, C.M. Backhouse, R. Harper, J. Matthews, C.N. McCollum, Comparison of absorbable materials for surgical
haemostasis, Br. J. Surg. 75(1988) 969-71.
[127] S. Enoch, D.J. Leaper, Basic science of wound healing, Surgery (Oxford). 23 (2005) 37–42.
[128] B.S. Kheirabadi, M.R. Scherer, J.S. Estep, M.A. Dubick, J.B. Holcomb, Determination of efficacy of new hemostatic
dressings in a model of extremity arterial hemorrhage in swine, J Trauma. 67 (2009) 450–459; discussion 459-460.
[129] O. Pinkas, M. Zilberman, Effect of hemostatic agents on properties of gelatin-alginate soft tissue adhesives, J Biomater Sci Polym Ed. 25 (2014) 555–573.
[130] H. Fawzy, E. Elmistekawy, D. Bonneau, D. Latter, L. Errett, Can local application of Tranexamic acid reduce post-coronary bypass surgery blood loss? A randomized controlled trial, J Cardiothorac Surg. 4 (2009) 25.
[131] D.B. M, C. F, A. F, L. E, S. F, M. U, S. R, P. Gf, Topical use of tranexamic acid in coronary artery bypass operations: a
double-blind, prospective, randomized, placebo-controlled study, J. Thorac. Cardiovasc.Surg. 119 (2000) 1-15.
[132] J. Wong, A. Abrishami, H. El Beheiry, N.N. Mahomed, J. Roderick Davey, R. Gandhi, K.A. Syed, S. Muhammad Ovais
Hasan, Y. De Silva, F. Chung, Topical application of tranexamic acid reduces postoperative blood loss in total knee
arthroplasty: a randomized, controlled trial, J Bone Joint Surg Am. 92 (2010) 2503–2513.
[133] Y. Li, B. Xia, Q. Zhao, F. Liu, P. Zhang, Q. Du, D. Wang, D. Li, Z. Wang, Y. Xia, Removal of copper ions from aqueous
solution by calcium alginate immobilized kaolin, J Environmen. Sci. 23 (2011) 404–411.
[134] K.G. Akpomie, F.A. Dawodu, Montmorillonite-rice husk composite for heavy metal sequestration from binary aqua media : a novel adsorbent, Trans. R. Soc. South Africa. 70 (2015) 83–88.
[135] Y. Marcus, Effect of Ions on the Structure of Water: Structure Making and Breaking, Chem. Rev.109(2009)1346-70.
[136] H. Yuehua, S. Wei, L. Haipu, Z. Xu, Role of macromolecules in kaolinite flotation, Miner. Eng., 17(2004)1017-1022.
[137] X. Ma, W.J. Bruckard, R. Holmes, Effect of collector, pH and ionic strength on the cationic flotation of kaolinite, Int. J.
Miner. Process. 93 (2009) 54–58.
[138] E. Tombácz, M. Szekeres, Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with
montmorillonite, Applied Clay Science. 34 (2006) 105–124.
[139] D.J.S. Hulmes, Building collagen molecules, fibrils, and suprafibrillar structures, J Struct Biol. 137 (2002) 2–10.
[140] M. Misgav, G. Kenet, U. Martinowitz, Chitosan-based Dressing for the Treatment of External/Accessible Bleedings in
Children With Bleeding Tendency, Journal of Pediatric Hematology/Oncology. 36 (2014) 140–142.
[141] Q. He, K. Gong, Q. Ao, T. Ma, Y. Yan, Y. Gong, X. Zhang, Positive charge of chitosan retards blood coagulation on chitosan films, J Biomater Appl. 27 (2013) 1032–1045.
[142] C. Wang, W. Luo, P. Li, S. Li, Z. Yang, Z. Hu, Y. Liu, N. Ao, Preparation and evaluation of chitosan/alginate porous
microspheres/Bletilla striata polysaccharide composite hemostatic sponges, Carbohydr Polym. 174 (2017) 432–442.
[143] J. Rong, M. Liang, F. Xuan, J. Sun, L. Zhao, H. Zhen, X. Tian, D. Liu, Q. Zhang, C. Peng, T. Yao, F. Li, X. Wang, Y. Han,
W. Yu, Alginate-calcium microsphere loaded with thrombin: a new composite biomaterial for hemostatic embolization, Int J Biol Macromol. 75 (2015) 479–488.
[144] R. Smeets, F. Gerhards, J.M. Stein, J. Stein, R.M.P. Paz, S. Vogt, C. Pautke, J. Weitz, A. Kolk, A novel hemostatic delivery
device for thrombin: biodegradable poly(D,L-lactide-co-glycolide) 50:50 microspheres, J Biomed Mater Res A. 96 (2011)
177–185.
[145] R. Schrieber, H. Gareis, Gelatine Handbook: Theory and Industrial Practice, John Wiley & Sons, 2007.
[146] R. Schrieber, H. Gareis, Gelatine Handbook: Theory and Industrial Practice, John Wiley & Sons, 2007.
[147] T.M. Tamer, M.M. Sabet, A.M. Omer, E. Abbas, A.I. Eid, M.S. Mohy-Eldin, M.A. Hassan, Hemostatic and antibacterial
PVA/Kaolin composite sponges loaded with penicillin–streptomycin for wound dressing applications, Sci Rep. 11 (2021)
3428.
[148] M. Jridi, I. Lassoued, A. Kammoun, R. Nasri, M. chaâbouni, M. Nasri, N. Souissi, Screening of factors influencing the
extraction of gelatin from the skin of cuttlefish using supersaturated design, Food Bioprod. Process. 94 (2015) 525–535.
[149] B. Rosemary, A. S. Douglas, and R. G. Macfarlane,The action of thromboplastic substances, J Physiol, 122(1953) 554–569.
[150] P. Calvini, G. Conio, M. Lorenzoni, E. Pedemonte, Viscometric determination of dialdehyde content in periodate
oxycellulose. Part I. Methodology, Cellulose. 11 (2004) 99–107.
[151] F. di Lena, Hemostatic polymers: the concept, state of the art and perspectives, J. Mater. Chem. B. 2 (2014) 3567–3577.
[152] B. Martina, K. Kateřina, R. Miloslava, G. Jan, M. Ruta, Oxycellulose: Significant characteristics in relation to its
pharmaceutical and medical applications, Adv. Polym. Technol. 28 (2009) 199–208.
[153] E.V. Gert, V.I. Torgashov, O.V. Zubets, F.N. Kaputskii, Preparation and Properties of Enterosorbents Based on Carboxylated Microcrystalline Cellulose, Cellulose. 12 (2005) 517–526.
[154] P. Dineen, Antibacterial activity of oxidized regenerated cellulose, Surg. Gynecol. Obstet. 142 (1976) 481–486.
[155] D. Spangler, S. Rothenburger, K. Nguyen, H. Jampani, S. Weiss, S. Bhende, In Vitro Antimicrobial Activity of Oxidized
Regenerated Cellulose Against Antibiotic-Resistant Microorganisms, Surg. Infect. 4 (2003) 255–262.
[156] I. Kulaev, T. Kulakovskaya, Polyphosphate and Phosphate Pump, Annual Review of Microbiology. 54 (2000) 709–34.
[157] S.N. Chvalun, M.A. Shcherbina, A.N. Yakunin, J. Blackwell, V. Percec, Structure of gyroid mesophase formed by
monodendrons with fluorinated alkyl tails, Polym. Sci. Ser. A. 49 (2007) 158–167.
[158] E. Balasubramanian, V. Balasubramanian, G. Babu, S. Devika, R. Rajendran, Moist Wound Dressing Fabrications:
Carboxymethylation of Antibacterial Cotton Gauze, J. Eng. Fibers Fab. 8 (2013) 1-8.
[159] S.A. Smith, J.H. Morrissey, Polyphosphate enhances fibrin clot structure, Blood. 112 (2008) 2810–2816.
[160] F. Müller, N.J. Mutch, W.A. Schenk, S.A. Smith, L. Esterl, H.M. Spronk, S. Schmidbauer, W.A. Gahl, J.H. Morrissey, T.
Renné, Platelet Polyphosphates Are Proinflammatory and Procoagulant Mediators In Vivo, Cell. 139 (2009) 1143–1156.
[161] K.B. Ljungberg, J. Marelius, D. Musil, P. Svensson, B. Norden, J. Åqvist, Computational modelling of inhibitor binding to human thrombin, Eur. J. Pharm. Sci. 12 (2001) 441–446.
[162] N. Biezunski, E. Shafrir, A. De Vries, E. Katchalski, The action of polylysine on the conversion of fibrinogen into fibrin by coagulase thrombin, Biochem J. 59 (1955) 55–58.
[163] T. Wang, X. Zhong, S. Wang, F. Lv, X. Zhao, Molecular Mechanisms of RADA16-1 Peptide on Fast Stop Bleeding in Rat Models, Int. J. Mol. Sci. 13 (2012) 15279–15290.
[164] A.J. Shoffstall, L.M. Everhart, M.E. Varley, E.S. Soehnlen, A.M. Shick, J.S. Ustin, E.B. Lavik, Tuning Ligand Density on
Intravenous Hemostatic Nanoparticles Dramatically Increases Survival Following Blunt Trauma, Biomacromolecules. 14
(2013) 2790–2797.
[165] C. Boyer, V. Bulmus, T.P. Davis, V. Ladmiral, J. Liu, S. Perrier, Bioapplications of RAFT Polymerization, Chem. Rev. 109
(2009) 5402–5436.
[166] H. Gao, K. Matyjaszewski, Synthesis of functional polymers with controlled architecture by CRP of monomers in the
presence of cross-linkers: From stars to gels, Prog. Polym. Sci. 34 (2009) 317–350.
[167] F.J. Wende, Y. Xue, G. Nestor, Å. Öhrlund, C. Sandström, Relaxation and diffusion of water protons in BDDE cross-linked
hyaluronic acid hydrogels investigated by NMR spectroscopy-Comparison with physicochemical properties, Carbohydr
Polym. 248 (2020) 116768.
[168] R. Barbucci, S. Lamponi, A. Borzacchiello, L. Ambrosio, M. Fini, P. Torricelli, R. Giardino, Hyaluronic acid hydrogel in
the treatment of osteoarthritis, Biomaterials. 23 (2002) 4503–4513. https://doi.org/10.1016/S0142-9612(02)00194-1.
[169] R.S. Singh, A. Gautam, V. Rai, Graphene-based bipolar plates for polymer electrolyte membrane fuel cells, Front. Mater. Sci. 13 (2019) 217–241.
[170] D. Miki, K. Dastgheib, T. Kim, A. Pfister-Serres, K.A. Smeds, M. Inoue, D.L. Hatchell, M.W. Grinstaff, A photopolymerized sealant for corneal lacerations, Cornea. 21 (2002) 393–399.