Biopolymers as Topical Haemostatic Agents: Current Trends and Technologies

Document Type : Review Article

Authors

1 Chitkara College of Pharmacy, Chitkara University, Punjab, India

2 School of Pharmacy and Emerging Sciences, Baddi University of Emerging Sciences and Technology, Baddi, Solan 173205, Himachal Pradesh, India

3 Department of Pharmacy, School of Health Sciences, Central University of South Bihar, Gaya-824209, India

Abstract

Hemostasis refers to the harmless practice of any surgical procedure or any other chronic ulcer which immediately requires therapy to prevent substantial blood loss and mortality from extreme hemorrhage in surgery/emergency conditions. Various natural, semi-synthetic as well as synthetic biopolymers are available with excellent hemostatic activity and further offer biodegradable and biocompatible nature with the live cells. Now a day’s biopolymers have become the most significant hemostatic agents used in emergency operations and surgical procedures. However, to date, there is no comprehensive report evaluating natural hemostatic materials based on biopolymers. Therefore, this current review attempts to combine the most advanced methods and secondly reviews various biopolymers including their preparation, origin, and composition, as well as safety and biodegradability. Insights on the various commercially available products based on biopolymers exhibiting hemostatic activity are well discussed. Thus, the paper summarizes the latest research work on commonly used biopolymers as the most widely used materials and provides an orientation for further research and development in this field.

Graphical Abstract

Biopolymers as Topical Haemostatic Agents: Current Trends and Technologies

Keywords


 [1] A. Zaidi, L. Green, Physiology of hemostasis, Anaesthesia & Intensive Care Medicine. 20 (2019) 152–158.
[2] A.J. Siddon, C.A. Tormey, The chemical and laboratory investigation of hemolysis, Adv Clin Chem. 89 (2019) 215–258.
[3] M.B. Dowling, A. Chaturvedi, I.C. MacIntire, V. Javvaji, J. Gustin, S.R. Raghavan, T.M. Scalea, M. Narayan, Determination
of efficacy of a novel alginate dressing in a lethal arterial injury model in swine, Injury. 47 (2016) 2105–2109.
[4] A. Momeni, M.J. Filiaggi, Degradation and hemostatic properties of polyphosphate coacervates, Acta Biomater. 41 (2016) 328–341.
[5] Z. Ma, G. Bao, J. Li, Multifaceted Design and Emerging Applications of Tissue Adhesives, Adv. Mater. 33 (2021) 2007663.
[6] P. Sharma, A. Kumar, T. Agarwal, A.D. Dey, F.D. Moghaddam, I. Rahimmanesh, M. Ghovvati, S. Yousefiasl, A.
Borzacchiello, A. Mohammadi, V.R. Yella, O. Moradi, E. Sharifi, Nucleic acid-based therapeutics for dermal wound healing,
Int J Biol Macromol. 220 (2022) 920–933.
[7] Garima, T. Agarwal, M. Costantini, S. Pal, A. Kumar, Oxygenation therapies for improved wound healing: current trends and technologies, J. Mater. Chem. B. 10 (2022) 7905–7923.
[8] A.D. Dey, S. Yousefiasl, A. Kumar, F.D. Moghaddam, I. Rahimmanesh, M. Samandari, S. Jamwal, A. Maleki, A. Mohammadi, N. Rabiee, A.C. Paiva-Santos, A. Tamayol, E. Sharifi, P. Makvandi, miRNA-encapsulated abiotic materials and biovectors for cutaneous and oral wound healing: Biogenesis, mechanisms, and delivery nanocarriers, Bioeng. Transl. Med. (2022) e10343.
[9] P. Sharma, A. Kumar, A.D. Dey, Cellular Therapeutics for Chronic Wound healing: Future for Regenerative Medicine, Curr Drug Targets. (2022). https://doi.org/10.2174/138945012309220623144620.
[10] A. Kumar, H. Kaur, Sprayed in-situ synthesis of polyvinyl alcohol/chitosan loaded silver nanocomposite hydrogel for
improved antibacterial effects, Int. J. Bio. Macro. 145 (2020) 950–964.
[11] A. Kumar, T. Behl, S. Chadha, Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects, Int. J. Bio. Macro. 149 (2020) 1262–1274.
[12] B.B. Hsu, W. Conway, C.M. Tschabrunn, M. Mehta, M.B. Perez-Cuevas, S. Zhang, P.T. Hammond, Clotting Mimicry from
Robust Hemostatic Bandages Based on Self-Assembling Peptides, ACS Nano. 9 (2015) 9394–9406.
[13] C. Ghobril, M.W. Grinstaff, The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial, Chem Soc Rev. 44 (2015) 1820–1835.
[14] M.A. Boerman, E. Roozen, M.J. Sánchez-Fernández, A.R. Keereweer, R.P. Félix Lanao, J.C.M.E. Bender, R. Hoogenboom,
S.C. Leeuwenburgh, J.A. Jansen, H. Van Goor, J.C.M. Van Hest, Next Generation Hemostatic Materials Based on NHS-Ester
Functionalized Poly(2-oxazoline)s, Biomacromolecules. 18 (2017) 2529–2538.
[15] S. Pourshahrestani, E. Zeimaran, I. Djordjevic, N.A. Kadri, M.R. Towler, Inorganic hemostats: The state-of-the-art and recent advances, Mater Sci Eng C Mater Biol Appl. 58 (2016) 1255–1268.
[16] L. Jobling, L. Eyre, Haemostasis, blood platelets and coagulation, Anaesthesia & Intensive Care Medicine. 14 (2013) 51–53.
[17] P.A. Cahill, E.M. Redmond, Vascular endothelium - Gatekeeper of vessel health, Atherosclerosis. 248 (2016) 97–109.
[18] N.J. Abbott, A.A.K. Patabendige, D.E.M. Dolman, S.R. Yusof, D.J. Begley, Structure and function of the blood-brain barrier, Neurobiol Dis. 37 (2010) 13–25.
[19] M.J. Fisher, Brain regulation of thrombosis and hemostasis: from theory to practice, Stroke. 44 (2013) 3275–3285.
[20] H. Rasche, Haemostasis and thrombosis: an overview, Eur. Heart. J. Suppl.,3 (2001), Q3–Q7.
[21] S. Palta, R. Saroa, A. Palta, Overview of the coagulation system, Indian J Anaesth. 58 (2014) 515–523.
[22] S.K. Austin, Haemostasis, Medicine. 45 (2017) 204–208.
[23] S.L. Allford, S. Machin, Haemostasis, Surgery (Oxford). 22 (2004) 200a–200d.
[24] E.M. Golebiewska, A.W. Poole, Platelet secretion: From haemostasis to wound healing and beyond, Blood Reviews. 29 (2015) 153–162.
[25] M.C. Berndt, P. Metharom, R.K. Andrews, Primary haemostasis: newer insights, Haemophilia. 20 Suppl 4 (2014) 15–22.
[26] G. Davì, C. Patrono, Platelet activation and atherothrombosis, N Engl J Med. 357 (2007) 2482–2494.
[27] M.J. Quinn, T.V. Byzova, J. Qin, E.J. Topol, E.F. Plow, Integrin
αIIbβ3 and Its Antagonism, Arteriosclerosis, Thrombosis,
and Vascular Biology. 23 (2003) 945–952.
[28] L.F. Brass, L. Zhu, T.J. Stalker, Novel Therapeutic Targets at the Platelet Vascular Interface, Arteriosclerosis, Thrombosis,
and Vascular Biology. 28 (2008) s43–s50.
[29] R. Rabieian, M. Boshtam, M. Zareei, S. Kouhpayeh, A. Masoudifar, H. Mirzaei, Plasminogen Activator Inhibitor Type-1 as a Regulator of Fibrosis, J. Cell. Biochem. 119 (2018) 17–27.
[30] C. Zheng, Q. Zeng, S. Pimpi, W. Wu, K. Han, K. Dong, T. Lu, Research status and development potential of composite
hemostatic materials, J. Mater. Chem. B. 8 (2020) 5395–5410.
[31] A. Saini, K. Serrano, K. Koss, L.D. Unsworth, Evaluation of the hemocompatibility and rapid hemostasis of (RADA)4 peptidebased hydrogels, Acta Biomater. 31 (2016) 71–79.
[32] X. Yang, W. Liu, N. Li, M. Wang, B. Liang, I. Ullah, A.L. Neve, Y. Feng, H. Chen, C. Shi, Design and development of
polysaccharide hemostatic materials and their hemostatic mechanism, Biomater. Sci. 5 (2017) 2357–2368.
[33] A.C. Anselmo, C.L. Modery-Pawlowski, S. Menegatti, S. Kumar, D.R. Vogus, L.L. Tian, M. Chen, T.M. Squires, A. Sen
Gupta, S. Mitragotri, Platelet-like Nanoparticles: Mimicking Shape, Flexibility, and Surface Biology of Platelets To Target
Vascular Injuries, ACS Nano. 8 (2014) 11243–11253.
[34] J. Yang, J. Lv, B. Gao, L. Zhang, D. Yang, C. Shi, J. Guo, W. Li, Y. Feng, Modification of polycarbonateurethane surface
with poly (ethylene glycol) monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion, Front. Chem. Sci. Eng. 8 (2014) 188–196.
[35] J. Yang, M. Khan, L. Zhang, X. Ren, J. Guo, Y. Feng, S. Wei, W. Zhang, Antimicrobial surfaces grafted random copolymers
with REDV peptide beneficial for endothelialization, J. Mater. Chem. B. 3 (2015) 7682–7697.
[36] X. Ren, Y. Feng, J. Guo, H. Wang, Q. Li, J. Yang, X. Hao, J. Lv, N. Ma, W. Li, Surface modification and endothelialization
of biomaterials as potential scaffolds for vascular tissue engineering applications, Chem Soc Rev. 44 (2015) 5680–5742.
[37] Y. Bu, L. Zhang, J. Liu, L. Zhang, T. Li, H. Shen, X. Wang, F. Yang, P. Tang, D. Wu, Synthesis and Properties of Hemostatic and Bacteria-Responsive in Situ Hydrogels for Emergency Treatment in Critical Situations, ACS Appl Mater Interfaces. 8 (2016) 12674–12683.
[38] K.M. Lewis, H. Atlee, A. Mannone, L. Lin, A. Goppelt, Efficacy of hemostatic matrix and microporous polysaccharide
hemospheres, J Surg Res. 193 (2015) 825–830.
[39] V. Arul, J.G. Masilamoni, E.P. Jesudason, P.J. Jaji, M. Inayathullah, D.G. Dicky John, S. Vignesh, R. Jayakumar, Glucose
oxidase incorporated collagen matrices for dermal wound repair in diabetic rat models: a biochemical study, J Biomater Appl. 26 (2012) 917–938.
[40] B. Hafemann, S. Ensslen, C. Erdmann, R. Niedballa, A. Zühlke, K. Ghofrani, C.J. Kirkpatrick, Use of a collagen/elastinmembrane for the tissue engineering of dermis1Dedicated to the late Professor Dr. Rolf Hettich.1, Burns. 25 (1999) 373–384.
[41] S. Shahverdi, M. Hajimiri, M.A. Esfandiari, B. Larijani, F. Atyabi, A. Rajabiani, A.R. Dehpour, A.A. Gharehaghaji, R.
Dinarvand, Fabrication and structure analysis of poly(lactide-co-glycolic acid)/silk fibroin hybrid scaffold for wound dressing applications, Int. J. Pharm. 473 (2014) 345–355.
[42] D. Logeart-Avramoglou, J. Jozefonvicz, Carboxymethyl benzylamide sulfonate dextrans (CMDBS), a family of biospecific polymers endowed with numerous biological properties: a review, J Biomed Mater Res. 48 (1999) 578–590.
[43] B.C. Lehtovaara, F.X. Gu, Pharmacological, structural, and drug delivery properties and applications of 1,3-
β-glucans, J Agric Food Chem. 59 (2011) 6813–6828.
[44] A. Sathain, P. Monvisade, P. Siriphannon, Bioactive alginate/carrageenan/calcium silicate porous scaffolds for bone tissue engineering, Mater. Today Commun. 26 (2021) 102165.
[45] M.B. Dreifke, N.A. Ebraheim, A.C. Jayasuriya, Investigation of potential injectable polymeric biomaterials for bone
regeneration, J Biomed Mater Res A. 101 (2013) 2436–2447.
[46] R. O’Leary, M. Rerek, E.J. Wood, Fucoidan modulates the effect of transforming growth factor (TGF)-beta1 on fibroblast proliferation and wound repopulation in in vitro models of dermal wound repair, Biol Pharm Bull. 27 (2004) 266–270.
[47] K.R. Kirker, Y. Luo, J.H. Nielson, J. Shelby, G.D. Prestwich, Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing, Biomaterials. 23 (2002) 3661–3671.
[48] P. Kakkar, S. Verma, I. Manjubala, B. Madhan, Development of keratin-chitosan-gelatin composite scaffold for soft tissue engineering, Mater Sci Eng C Mater Biol Appl. 45 (2014) 343–347.
[49] S. El-Sayed, K.H. Mahmoud, A.A. Fatah, A. Hassen, DSC, TGA and dielectric properties of carboxymethyl
cellulose/polyvinyl alcohol blends, Physica B: Condensed Matter. 406 (2011) 4068–4076.
[50] M.S. Agren, U. Ostenfeld, F. Kallehave, Y. Gong, K. Raffn, M.E. Crawford, K. Kiss, A. Friis-Møller, C. Gluud, L.N.
Jorgensen, A randomized, double-blind, placebo-controlled multicenter trial evaluating topical zinc oxide for acute open
wounds following pilonidal disease excision, Wound Repair Regen. 14 (2006) 526–535.
[51] M.B. Dowling, W. Smith, P. Balogh, M.J. Duggan, I.C. MacIntire, E. Harris, T. Mesar, S.R. Raghavan, D.R. King,
Hydrophobically-modified chitosan foam: description and hemostatic efficacy, Journal of Surgical Research. 193 (2015) 316– 323.
[52] J. Ong, A. Clarke, P. White, M.A. Johnson, S. Withey, P.E.M. Butler, Objective evidence for the use of polylactic acid implants in HIV-associated facial lipoatrophy using three-dimensional surface laser scanning and psychological assessment, J Plast Reconstr Aesthet Surg. 62 (2009) 1627–1635.
[53] S.Sharma, P. Sudhakara, J. Singh, R. A. Ilyas, Critical Review of Biodegradable and Bioactive Polymer Composites for Bone Tissue Engineering and Drug Delivery Applications, Polymers (Basel) 13(2021) 2623.
[54] S.N. Chvalun, M.A. Shcherbina, A.N. Yakunin, J. Blackwell, V. Percec, Structure of gyroid mesophase formed by
monodendrons with fluorinated alkyl tails, Polym. Sci. Ser. A. 49 (2007) 158–167.
[55] B. Donnio, D. Guillon, Liquid Crystalline Dendrimers and Polypedes, in: Supramolecular Polymers Polymeric Betains
Oligomers, Springer, Berlin, Heidelberg, 2006: pp. 45–155.
[56] R. Kaup, J.B. ten Hove, A.H. Velders, Dendroids, Discrete Covalently Cross-Linked Dendrimer Superstructures, ACS Nano. 15 (2021) 1666–1674.
[57] B.D. Olsen, S.-Y. Jang, J.M. Lüning, R.A. Segalman, Higher Order Liquid Crystalline Structure in Low-Polydispersity DEHPPV, Macromolecules. 39 (2006) 4469–4479.
[58] S.M. Yu, V.P. Conticello, G. Zhang, C. Kayser, M.J. Fournier, T.L. Mason, D.A. Tirrell, Smectic ordering in solutions and
films of a rod-like polymer owing to monodispersity of chain length, Nature. 389 (1997) 167–170.
[59] J.M. Smeenk, M.B.J. Otten, J. Thies, D.A. Tirrell, H.G. Stunnenberg, J.C.M. van Hest, Controlled Assembly of
Macromolecular
β-Sheet Fibrils, Angew. Chem. Int. Ed. 44 (2005) 1968–1971.
[60] Y. Yamamoto, Y. Tsutsumi, Y. Yoshioka, T. Nishibata, K. Kobayashi, T. Okamoto, Y. Mukai, T. Shimizu, S. Nakagawa, S.
Nagata, T. Mayumi, Site-specific PEGylation of a lysine-deficient TNF-alpha with full bioactivity, Nat Biotechnol. 21 (2003)
546–552.
[61] D. Cunliffe, S. Pennadam, C. Alexander, Synthetic and biological polymers - Merging the interface, Eur. Polym. J. 40 (2004) 5–25.
[62] K.D. Jensen, A. Nori, M. Tijerina, P. Kopecková, J. Kopecek, Cytoplasmic delivery and nuclear targeting of synthetic
macromolecules, J Control Release. 87 (2003) 89–105.
[63] W. Cheng, J. He, M. Chen, D. Li, H. Li, L. Chen, Y. Cao, J. Wang, Y. Huang, Preparation, functional characterization and
hemostatic mechanism discussion for oxidized microcrystalline cellulose and its composites, Fibers Polym. 17 (2016) 1277– 1286.
[64] J.T. Correll, E.C. Wise, Certain Properties of a New Physiologically Absorbable Sponge, Proc. Soc. Exp. Biol. Med. 58 (1945) 233–235.
[65] R.I. Litvinov, M. Pieters, Z. de Lange-Loots, J.W. Weisel, Fibrinogen and Fibrin, in: J.R. Harris, J. Marles-Wright (Eds.),
Macromolecular Protein Complexes III: Structure and Function, Springer International Publishing, Cham, 2021: pp. 471–501.
[66] M.R. Hait, C.A. Robb, C.R. Baxter, A.R. Borgmann, L.O. Tippett, Comparative evaluation of Avitene microcrystalline
collagen hemostat in experimental animal wounds, Am J Surg. 125 (1973) 284–287.
[67] K.H. Waibel, B. Haney, M. Moore, B. Whisman, R. Gomez, Safety of chitosan bandages in shellfish allergic patients, Mil
Med. 176 (2011) 1153–1156.
[68] M.A. Warner, S.E. Shields, C.G. Chute, Major morbidity and mortality within 1 month of ambulatory surgery and anesthesia,
JAMA. 270 (1993) 1437–1441.
[69] R.H. Fortelny, A.H. Petter-Puchner, K.S. Glaser, H. Redl, Use of fibrin sealant (Tisseel/Tissucol) in hernia repair: a systematic review, Surg Endosc. 26 (2012) 1803–1812.
[70] D.E. Milkes, S. Friedland, O.S. Lin, T.R. Reid, R.M. Soetikno, A novel method to control severe upper GI bleeding from
metastatic cancer with a hemostatic sealant: the CoStasis surgical hemostat, Gastrointest Endosc. 55 (2002) 735–740.
[71] J.K. Allotey, A.H. King, N.H. Kumins, V.L. Wong, K.C. Harth, J.S. Cho, V.S. Kashyap, Systematic review of hemostatic
agents used in vascular surgery, J. Vasc. Surg. 73 (2021) 2189–2197.
[72] S. Krishnan, T.M. Conner, R. Leslie, S. Stemkowski, A. Shander, Choice of hemostatic agent and hospital length of stay in cardiovascular surgery, Semin Cardiothorac Vasc Anesth. 13 (2009) 225–230.
[73] H. Azargoon, B.J. Williams, E.S. Solomon, H.P. Kessler, J. He, R. Spears, Assessment of hemostatic efficacy and osseous
wound healing using HemCon dental dressing, J Endod. 37 (2011) 807–811.
[74] F.A. Herrera, C.K. Lee, G. Kryger, J. Roostaeian, B. Safa, R.F. Lohman, L.J. Gottlieb, R.L. Walton, Microsurgery in the
hypercoagulable patient: review of the literature, J Reconstr Microsurg. 28 (2012) 305–312.
[75] A.J. Boulton, C.T. Lewis, D.N. Naumann, M.J. Midwinter, Prehospital haemostatic dressings for trauma: a systematic review, Emerg Med J. 35 (2018) 449–457.
[76] K. Broos, H.B. Feys, S.F. De Meyer, K. Vanhoorelbeke, H. Deckmyn, Platelets at work in primary hemostasis, Blood Rev.
25 (2011) 155–167.
[77] J.M. Kärkkäinen, Acute Mesenteric Ischemia: A Challenge for the Acute Care Surgeon, Scand J Surg. 110 (2021) 150–158.
[78] S. Acosta, M. Wadman, I. Syk, S. Elmståhl, O. Ekberg, Epidemiology and prognostic factors in acute superior mesenteric artery occlusion, J Gastrointest Surg. 14 (2010) 628–635.
[79] K.J. Zehr, Use of bovine albumin-glutaraldehyde glue in cardiovascular surgery, Ann Thorac Surg. 84 (2007) 1048–1052.
[80] C. Liu, X. Liu, C. Liu, N. Wang, H. Chen, W. Yao, G. Sun, Q. Song, W. Qiao, A highly efficient, in situ wet-adhesive dextran derivative sponge for rapid hemostasis, Biomaterials. 205 (2019) 23–37.
[81] X. Yang, W. Liu, N. Li, M. Wang, B. Liang, I. Ullah, A.L. Neve, Y. Feng, H. Chen, C. Shi, Design and development of
polysaccharide hemostatic materials and their hemostatic mechanism, Biomater. Sci. 5 (2017) 2357–2368.
[82] G. Lan, Q. Li, F. Lu, K. Yu, B. Lu, R. Bao, F. Dai, Improvement of platelet aggregation and rapid induction of hemostasis in chitosan dressing using silver nanoparticles, Cellulose. 27(2020) 385-400.
[83] X. Li, Y.-C. Li, M. Chen, Q. Shi, R. Sun, X. Wang, Chitosan/rectorite nanocomposite with injectable functionality for skin
hemostasis, J. Mater. Chem. B. 6 (2018) 6544–6549.
[84] C. Zheng, Q. Zeng, S. Pimpi, W. Wu, K. Han, K. Dong, T. Lu, Research status and development potential of composite
hemostatic materials, J. Mater. Chem. B. 8 (2020) 5395–5410.
[85] J. Zhang, S. Xue, X. Zhu, Y. Zhao, Y. Chen, J. Tong, X. Shi, Y. Du, Z. Zhong, Q. Ye, Emerging chitin nanogels/rectorite
nanocomposites for safe and effective hemorrhage control, J. Mater. Chem. B. 7 (2019) 5096–5103.
[86] J. Yu, H. Su, S. Wei, F. Chen, C. Liu, Calcium content mediated hemostasis of calcium-modified oxidized microporous starch, J. Biomater. Sci. Polym. Ed. 29 (2018) 1716–1728.
[87] C. Zheng, Q. Zeng, S. Pimpi, W. Wu, K. Han, K. Dong, T. Lu, Research status and development potential of composite
hemostatic materials, J. Mater. Chem. B. 8 (2020) 5395–5410.
[88] X. Yang, W. Liu, N. Li, M. Wang, B. Liang, I. Ullah, A.L. Neve, Y. Feng, H. Chen, C. Shi, Design and development of
polysaccharide hemostatic materials and their hemostatic mechanism, Biomater. Sci. 5 (2017) 2357–2368.
[89] J. Liu, F. Lu, H. Chen, R. Bao, Z. Li, B. Lu, K. Yu, F. Dai, D. Wu, G. Lan, Healing of skin wounds using a new cocoon
scaffold loaded with platelet-rich or platelet-poor plasma, RSC Adv. 7 (2017) 6474–6485.
[90] P.C. Kavitha Sankar, G. Rajmohan, M.J. Rosemary, Physico-chemical characterisation and biological evaluation of freeze dried chitosan sponge for wound care, Materials Letters. 208 (2017) 130–132.
[91] H. Hattori, M. Ishihara, Development of Mucoadhesive Chitosan Derivatives for Use as Submucosal Injections, Polymers (Basel). 10 (2018) 410.
[92] X. Yang, W. Liu, N. Li, M. Wang, B. Liang, I. Ullah, A.L. Neve, Y. Feng, H. Chen, C. Shi, Design and development of
polysaccharide hemostatic materials and their hemostatic mechanism, Biomater. Sci. 5 (2017) 2357–2368.
[93] Y. Chen, Y. Zhang, F. Wang, W. Meng, X. Yang, P. Li, J. Jiang, H. Tan, Y. Zheng, Preparation of porous carboxymethyl
chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing, Mater Sci Eng C Mater Biol Appl. 63 (2016) 18–29.
[94] M. Nieto-Suárez, M.A. López-Quintela, M. Lazzari, Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly, Carbohydr Polym. 141 (2016) 175–183.
[95] Swelling and Reswelling Characteristics of Cross-Linked Poly(vinyl alcohol)/Chitosan Hydrogel Film: Journal of Dispersion Science and Technology: Vol 32, No 9, (n.d.).
[96] T.C. Yadav, A.K. Srivastava, N. Raghuwanshi, N. Kumar, R. Prasad, V. Pruthi, Wound Healing Potential of Natural Polymer: Chitosan “A Wonder Molecule,” in: Integrating Green Chemistry and Sustainable Engineering, John Wiley & Sons, Ltd, 2019: pp. 527–579.
[97] P. Fonte, S. Reis, B. Sarmento, Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery, J Control. Rel. 225 (2016) 75–86.
[98] H. Li, F. Cheng, S. Gao, Z. Wu, L. Dong, S. Lin, Z. Luo, X. Li, Preparation, characterization, antibacterial properties, and
hemostatic evaluation of ibuprofen-loaded chitosan/gelatin composite films, J. Appl Polym. Sci. 134 (2017) 45441.
[99] T. Liebert, S. Hornig, S. Hesse, T. Heinze., Nanoparticles on the basis of highly functionalized dextrans, J. Am. Chem. Soc.127(2005)10484-5.
[100] S. Hornig, T. Liebert, T. Heinze, Structure design of multifunctional furoate and pyroglutamate esters of dextran by polymeranalogous reactions, Macromol Biosci. 7 (2007) 297–306.
[101] T. Heinze, T. Liebert, B. Heublein, S. Hornig. Functional Polymers Based on Dextran. In: Klemm, D. (eds) Polysaccharides II. Adv. Polym. Sci. 205 (2006). Springer, Berlin, Heidelberg.
[102] Q. Escartin, C. Lallam-Laroye, B. Baroukh, F.O. Morvan, J.P. Caruelle, G. Godeau, D. Barritault, J.L. Saffar, A new
approach to treat tissue destruction in periodontitis with chemically modified dextran polymers, FASEB J. 17 (2003) 644–
651.
[103] F. Xiao, C. Nicholson, J. Hrabe, S. Hrabetová, Diffusion of flexible random-coil dextran polymers measured in anisotropic brain extracellular space by integrative optical imaging, Biophys J. 95 (2008) 1382–1392.
[104] T.T. Nielsen, V. Wintgens, C. Amiel, R. Wimmer, K.L. Larsen, Facile synthesis of beta-cyclodextrin-dextran polymers by “click” chemistry, Biomacromolecules. 11 (2010) 1710–1715.
[105] J.G. Clay, D. Zierold, K. Grayson, F.D. Battistella, Dextran polymer hemostatic dressing improves survival in liver injury
model, J Surg Res. 155 (2009) 89–93.
[106] J.L. Degen, J.S. Palumbo, Hemostatic factors, innate immunity and malignancy, Thrombosis Research. 129 (2012) S1–S5.
[107] C. Liu, X. Liu, C. Liu, N. Wang, H. Chen, W. Yao, G. Sun, Q. Song, W. Qiao, A highly efficient, in situ wet-adhesive dextran derivative sponge for rapid hemostasis, Biomaterials. 205 (2019) 23–37.
[108] M.M. Glowaski, P.F. Moon–Massat, H.N. Erb, S.C. Barr, Effects of oxypolygelatin and dextran 70 on hemostatic variables in dogs, Veterinary Anaesthesia and Analgesia. 30 (2003) 202–210.
[109] J.-Y. Liu, Y. Li, Y. Hu, G. Cheng, E. Ye, C. Shen, F.-J. Xu, Hemostatic porous sponges of cross-linked hyaluronic
acid/cationized dextran by one self-foaming process, Mater Sci Eng C Mater Biol Appl. 83 (2018) 160–168.
[110] F. Chaubet, J. Champion, O. Maïga, S. Mauray, J. Jozefonvicz, Synthesis and structure—anticoagulant property relationships of functionalized dextrans: CMDBS, Carbohydr. Polym. 28 (1995) 145–152.
[111] M.W. Rampling, Interactions between dextran, fibrinogen and plasma membranes, Biochem. Pharmacol. 25 (1976) 751– 752.
[112] M. Åberg, U. Hedner, S.-E. Bergentz, Effect of dextran 70 on factor VIII and platelet function in von Willebrand’s disease, Thromb. Res. 12 (1978) 629–634.
[113] M. Xu, X. Wang, Y. Yan, R. Yao, Y. Ge, An cell-assembly derived physiological 3D model of the metabolic syndrome,
based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix, Biomaterials. 31 (2010) 3868–3877.
[114] J. Grzesiak, J. Kolankowski, K. Marycz, Osteogenic Differentiation of Canine Adipose Stem Cells Cultured in AlginateFibrin-Based Hydrogel, J. Biomater. Tissue Eng. 5 (2015) 703–710.
[115] M.G. Antoniraj, C.S. Kumar, R. Kandasamy, Synthesis and characterization of poly (N-isopropylacrylamide)-gcarboxymethyl chitosan copolymer-based doxorubicin-loaded polymeric nanoparticles for thermoresponsive drug release. Colloid. Polym. Sci. 294 (2016)527–535.
[116] S.A. Kale, V.H. Bajaj, An optimization study of rifampicin oral suspension formulation using central composite design of experiment model, Pharma. Innovation 5(2016)11-17.
[117] E.M. Bachelder, E.N. Pino, K.M. Ainslie, Acetalated Dextran: A Tunable and Acid-Labile Biopolymer with Facile Synthesis and a Range of Applications, Chem Rev. 117 (2017) 1915–1926.
[118] N. Chen, M.A. Collier, M.D. Gallovic, G.C. Collins, C.C. Sanchez, E.Q. Fernandes, E.M. Bachelder, K.M. Ainslie,
Degradation of acetalated dextran can be broadly tuned based on cyclic acetal coverage and molecular weight, Int J Pharm. 512 (2016) 147–157.
[119] H. Zhou, H.H.K. Xu, The fast release of stem cells from alginate-fibrin microbeads in injectable scaffolds for bone tissue engineering, Biomaterials. 32 (2011) 7503–7513.
[120] K. Ma, A.L. Titan, M. Stafford, C. hua Zheng, M.E. Levenston, Variations in chondrogenesis of human bone marrow-derived mesenchymal stem cells in fibrin/alginate blended hydrogels, Acta Biomater. 8 (2012) 3754–3764.
https://doi.org/10.1016/j.actbio.2012.06.028.
[121] M.C. Serrano, M.C. Gutiérrez, F. del Monte, Role of polymers in the design of 3D carbon nanotube-based scaffolds for biomedical applications, Prog. Polym. Sci. 7 (2014) 1448–1471.
[122] L. Zheng, X. Jiang, X. Chen, H. Fan, X. Zhang, Evaluation of novel in situ synthesized nano-hydroxyapatite/collagen/alginate hydrogels for osteochondral tissue engineering, Biomed Mater. 9 (2014) 065004.
[123] G. Montalbano, S. Toumpaniari, A. Popov, P. Duan, J. Chen, K. Dalgarno, W.E. Scott, A.M. Ferreira, Synthesis of
bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering, Mater. Sci. Eng. C. 91 (2018) 236–246.
[124] M. Bongio, S. Lopa, M. Gilardi, S. Bersini, M. Moretti, A 3D vascularized bone remodeling model combining osteoblasts and osteoclasts in a CaP nanoparticle-enriched matrix, Nanomedicine (Lond). 11 (2016) 1073–1091.
[125] I.R. Matthew, R.M. Browne, J.W. Frame, B.G. Millar, Tissue response to a haemostatic alginate wound dressing in tooth extraction sockets, Br. J. of Oral Maxillofac. Surg. 31 (1993) 165–169.
[126] S.D. Blair, C.M. Backhouse, R. Harper, J. Matthews, C.N. McCollum, Comparison of absorbable materials for surgical
haemostasis, Br. J. Surg. 75(1988) 969-71.
[127] S. Enoch, D.J. Leaper, Basic science of wound healing, Surgery (Oxford). 23 (2005) 37–42.
[128] B.S. Kheirabadi, M.R. Scherer, J.S. Estep, M.A. Dubick, J.B. Holcomb, Determination of efficacy of new hemostatic
dressings in a model of extremity arterial hemorrhage in swine, J Trauma. 67 (2009) 450–459; discussion 459-460.
[129] O. Pinkas, M. Zilberman, Effect of hemostatic agents on properties of gelatin-alginate soft tissue adhesives, J Biomater Sci Polym Ed. 25 (2014) 555–573.
[130] H. Fawzy, E. Elmistekawy, D. Bonneau, D. Latter, L. Errett, Can local application of Tranexamic acid reduce post-coronary bypass surgery blood loss? A randomized controlled trial, J Cardiothorac Surg. 4 (2009) 25.
[131] D.B. M, C. F, A. F, L. E, S. F, M. U, S. R, P. Gf, Topical use of tranexamic acid in coronary artery bypass operations: a
double-blind, prospective, randomized, placebo-controlled study, J. Thorac. Cardiovasc.Surg. 119 (2000) 1-15.
[132] J. Wong, A. Abrishami, H. El Beheiry, N.N. Mahomed, J. Roderick Davey, R. Gandhi, K.A. Syed, S. Muhammad Ovais
Hasan, Y. De Silva, F. Chung, Topical application of tranexamic acid reduces postoperative blood loss in total knee
arthroplasty: a randomized, controlled trial, J Bone Joint Surg Am. 92 (2010) 2503–2513.
[133] Y. Li, B. Xia, Q. Zhao, F. Liu, P. Zhang, Q. Du, D. Wang, D. Li, Z. Wang, Y. Xia, Removal of copper ions from aqueous
solution by calcium alginate immobilized kaolin, J Environmen. Sci. 23 (2011) 404–411.
[134] K.G. Akpomie, F.A. Dawodu, Montmorillonite-rice husk composite for heavy metal sequestration from binary aqua media
: a novel adsorbent, Trans. R. Soc. South Africa. 70 (2015) 83–88.
[135] Y. Marcus, Effect of Ions on the Structure of Water: Structure Making and Breaking, Chem. Rev.109(2009)1346-70.
[136] H. Yuehua, S. Wei, L. Haipu, Z. Xu, Role of macromolecules in kaolinite flotation, Miner. Eng., 17(2004)1017-1022.
[137] X. Ma, W.J. Bruckard, R. Holmes, Effect of collector, pH and ionic strength on the cationic flotation of kaolinite, Int. J.
Miner. Process. 93 (2009) 54–58.
[138] E. Tombácz, M. Szekeres, Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with
montmorillonite, Applied Clay Science. 34 (2006) 105–124.
[139] D.J.S. Hulmes, Building collagen molecules, fibrils, and suprafibrillar structures, J Struct Biol. 137 (2002) 2–10.
[140] M. Misgav, G. Kenet, U. Martinowitz, Chitosan-based Dressing for the Treatment of External/Accessible Bleedings in
Children With Bleeding Tendency, Journal of Pediatric Hematology/Oncology. 36 (2014) 140–142.
[141] Q. He, K. Gong, Q. Ao, T. Ma, Y. Yan, Y. Gong, X. Zhang, Positive charge of chitosan retards blood coagulation on chitosan films, J Biomater Appl. 27 (2013) 1032–1045.
[142] C. Wang, W. Luo, P. Li, S. Li, Z. Yang, Z. Hu, Y. Liu, N. Ao, Preparation and evaluation of chitosan/alginate porous
microspheres/Bletilla striata polysaccharide composite hemostatic sponges, Carbohydr Polym. 174 (2017) 432–442.
[143] J. Rong, M. Liang, F. Xuan, J. Sun, L. Zhao, H. Zhen, X. Tian, D. Liu, Q. Zhang, C. Peng, T. Yao, F. Li, X. Wang, Y. Han,
W. Yu, Alginate-calcium microsphere loaded with thrombin: a new composite biomaterial for hemostatic embolization, Int J Biol Macromol. 75 (2015) 479–488.
[144] R. Smeets, F. Gerhards, J.M. Stein, J. Stein, R.M.P. Paz, S. Vogt, C. Pautke, J. Weitz, A. Kolk, A novel hemostatic delivery
device for thrombin: biodegradable poly(D,L-lactide-co-glycolide) 50:50 microspheres, J Biomed Mater Res A. 96 (2011)
177–185.
[145] R. Schrieber, H. Gareis, Gelatine Handbook: Theory and Industrial Practice, John Wiley & Sons, 2007.
[146] R. Schrieber, H. Gareis, Gelatine Handbook: Theory and Industrial Practice, John Wiley & Sons, 2007.
[147] T.M. Tamer, M.M. Sabet, A.M. Omer, E. Abbas, A.I. Eid, M.S. Mohy-Eldin, M.A. Hassan, Hemostatic and antibacterial
PVA/Kaolin composite sponges loaded with penicillin–streptomycin for wound dressing applications, Sci Rep. 11 (2021)
3428.
[148] M. Jridi, I. Lassoued, A. Kammoun, R. Nasri, M. chaâbouni, M. Nasri, N. Souissi, Screening of factors influencing the
extraction of gelatin from the skin of cuttlefish using supersaturated design, Food Bioprod. Process. 94 (2015) 525–535.
[149] B. Rosemary, A. S. Douglas, and R. G. Macfarlane,The action of thromboplastic substances, J Physiol, 122(1953) 554–569.
[150] P. Calvini, G. Conio, M. Lorenzoni, E. Pedemonte, Viscometric determination of dialdehyde content in periodate
oxycellulose. Part I. Methodology, Cellulose. 11 (2004) 99–107.
[151] F. di Lena, Hemostatic polymers: the concept, state of the art and perspectives, J. Mater. Chem. B. 2 (2014) 3567–3577.
[152] B. Martina, K. Kate
řina, R. Miloslava, G. Jan, M. Ruta, Oxycellulose: Significant characteristics in relation to its
pharmaceutical and medical applications, Adv. Polym. Technol. 28 (2009) 199–208.
[153] E.V. Gert, V.I. Torgashov, O.V. Zubets, F.N. Kaputskii, Preparation and Properties of Enterosorbents Based on Carboxylated Microcrystalline Cellulose, Cellulose. 12 (2005) 517–526.
[154] P. Dineen, Antibacterial activity of oxidized regenerated cellulose, Surg. Gynecol. Obstet. 142 (1976) 481–486.
[155] D. Spangler, S. Rothenburger, K. Nguyen, H. Jampani, S. Weiss, S. Bhende, In Vitro Antimicrobial Activity of Oxidized
Regenerated Cellulose Against Antibiotic-Resistant Microorganisms, Surg. Infect. 4 (2003) 255–262.
[156] I. Kulaev, T. Kulakovskaya, Polyphosphate and Phosphate Pump, Annual Review of Microbiology. 54 (2000) 709–34.
[157] S.N. Chvalun, M.A. Shcherbina, A.N. Yakunin, J. Blackwell, V. Percec, Structure of gyroid mesophase formed by
monodendrons with fluorinated alkyl tails, Polym. Sci. Ser. A. 49 (2007) 158–167.
[158] E. Balasubramanian, V. Balasubramanian, G. Babu, S. Devika, R. Rajendran, Moist Wound Dressing Fabrications:
Carboxymethylation of Antibacterial Cotton Gauze, J. Eng. Fibers Fab. 8 (2013) 1-8.
[159] S.A. Smith, J.H. Morrissey, Polyphosphate enhances fibrin clot structure, Blood. 112 (2008) 2810–2816.
[160] F. Müller, N.J. Mutch, W.A. Schenk, S.A. Smith, L. Esterl, H.M. Spronk, S. Schmidbauer, W.A. Gahl, J.H. Morrissey, T.
Renné, Platelet Polyphosphates Are Proinflammatory and Procoagulant Mediators In Vivo, Cell. 139 (2009) 1143–1156.
[161] K.B. Ljungberg, J. Marelius, D. Musil, P. Svensson, B. Norden, J. Åqvist, Computational modelling of inhibitor binding to human thrombin, Eur. J. Pharm. Sci. 12 (2001) 441–446.
[162] N. Biezunski, E. Shafrir, A. De Vries, E. Katchalski, The action of polylysine on the conversion of fibrinogen into fibrin by coagulase thrombin, Biochem J. 59 (1955) 55–58.
[163] T. Wang, X. Zhong, S. Wang, F. Lv, X. Zhao, Molecular Mechanisms of RADA16-1 Peptide on Fast Stop Bleeding in Rat Models, Int. J. Mol. Sci. 13 (2012) 15279–15290.
[164] A.J. Shoffstall, L.M. Everhart, M.E. Varley, E.S. Soehnlen, A.M. Shick, J.S. Ustin, E.B. Lavik, Tuning Ligand Density on
Intravenous Hemostatic Nanoparticles Dramatically Increases Survival Following Blunt Trauma, Biomacromolecules. 14
(2013) 2790–2797.
[165] C. Boyer, V. Bulmus, T.P. Davis, V. Ladmiral, J. Liu, S. Perrier, Bioapplications of RAFT Polymerization, Chem. Rev. 109
(2009) 5402–5436.
[166] H. Gao, K. Matyjaszewski, Synthesis of functional polymers with controlled architecture by CRP of monomers in the
presence of cross-linkers: From stars to gels, Prog. Polym. Sci. 34 (2009) 317–350.
[167] F.J. Wende, Y. Xue, G. Nestor, Å. Öhrlund, C. Sandström, Relaxation and diffusion of water protons in BDDE cross-linked
hyaluronic acid hydrogels investigated by NMR spectroscopy-Comparison with physicochemical properties, Carbohydr
Polym. 248 (2020) 116768.
[168] R. Barbucci, S. Lamponi, A. Borzacchiello, L. Ambrosio, M. Fini, P. Torricelli, R. Giardino, Hyaluronic acid hydrogel in
the treatment of osteoarthritis, Biomaterials. 23 (2002) 4503–4513. https://doi.org/10.1016/S0142-9612(02)00194-1.
[169] R.S. Singh, A. Gautam, V. Rai, Graphene-based bipolar plates for polymer electrolyte membrane fuel cells, Front. Mater. Sci. 13 (2019) 217–241.
[170] D. Miki, K. Dastgheib, T. Kim, A. Pfister-Serres, K.A. Smeds, M. Inoue, D.L. Hatchell, M.W. Grinstaff, A photopolymerized sealant for corneal lacerations, Cornea. 21 (2002) 393–399.