T-cell Membrane-Functionalized Nanosystems for Viral Infectious Diseases

Document Type : Review Article

Authors

1 School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China

2 Nursing & Midwifery School, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Being a universal obstacle, HIV requires a vaccine or potential cure. As a matter of fact, the invention of an efficacious vaccine or therapeutic cure for human immunodeficiency (HIV) is of paramount importance, which can provide potent and wide-ranging neutralization against viral infections. Although the genetic variation of this virus can hamper efforts, advanced technologies such as coating technology by cell membrane can mitigate the situation. To shed light on this matter, T-cell-membrane-coated nanoparticles are considerable. These nanoparticles have antigens that are naturally on the T cell surface and are fundamental for HIV binding, for instance, CD4 receptor and CCR5 or CXCR4 coreceptors. Not only HIV can be successfully neutralized by TNPs, but also, they can precisely bind to the intended targets of infected cells. Consequently, there would be a fall in the number of released HIV-1 particles through an autophagy-dependent mechanism with no drug being used off-target or cytotoxic effects on observer cells. In this review we highlight the emerging role of the T-cell-membrane-coated nanoparticles for the treatment of the viral infectious diseases.

Graphical Abstract

T-cell Membrane-Functionalized Nanosystems for Viral Infectious Diseases

Keywords


 [1] F. Raza, H. Zafar, X. You, A. Khan, J. Wu, L. Ge, Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers, J Mater Chem B 7(48) (2019) 7639-7655.
[2] F. Raza, H. Zafar, Y. Zhu, Y. Ren, A. Ullah, A.U. Khan, X. He, H. Han, M. Aquib, K.O. Boakye-Yiadom, A review on recent
advances in stabilizing peptides/proteins upon fabrication in hydrogels from biodegradable polymers, Pharmaceutics 10(1) (2018) 16.
[3] F. Raza, Y. Zhu, L. Chen, X. You, J. Zhang, A. Khan, M.W. Khan, M. Hasnat, H. Zafar, J. Wu, Paclitaxel-loaded pH-responsive hydrogel based on self-assembled peptides for tumor targeting, Biomater. Sci.7(5) (2019) 2023-2036.
[4] Y. Zhu, L. Wang, Y. Li, Z. Huang, S. Luo, Y. He, H. Han, F. Raza, J. Wu, L. Ge, Injectable pH and redox dual responsive hydrogel based on self-assembled peptides for anti-tumor drug delivery, Biomater. Sci., 8(2020) 5415-5426.
[5] F. Raza, H. Zafar, S. Zhang, Z. Kamal, J. Su, W.E. Yuan, Q. Mingfeng, Recent Advances in Cell Membrane
Derived Biomimetic Nanotechnology for Cancer Immunotherapy, Adv. Healthc. Mater. 10(6) (2021) 2002081.
[6] G. Heidari, M. Hassanpour, F. Nejaddehbashi, M.R. Sarfjoo, S. Yousefiasl, E. Sharifi, A. Bigham, T. Agarwal, A. Borzacchiello, E.J.M.C.H. Lagreca, Biosynthesized nanomaterials with antioxidant and antimicrobial properties, Mater. Chem. Horizons 1(1) (2022) 35-48.
[7] Z. Islamipour, E.N. Zare, F. Salimi, M. Ghomi, P. Makvandi, Biodegradable antibacterial and antioxidant nanocomposite films based on dextrin for bioactive food packaging, J. Nanostructure Chem. 12(2022)991–1006.
[8] S. Yousefiasl, H. Manoochehri, P. Makvandi, S. Afshar, E. Salahinejad, P. Khosraviyan, M. Saidijam, S. Soleimani Asl, E. Sharifi, Chitosan/alginate bionanocomposites adorned with mesoporous silica nanoparticles for bone tissue engineering, J. Nanostructure Chem. (2022) 1-15.
[9] G. Heidari, M. Hassanpour, F. Nejaddehbashi, M.R. Sarfjoo, S. Yousefiasl, E. Sharifi, A. Bigham, T. Agarwal, A. Borzacchiello, E. Lagreca, Biosynthesized Nanomaterials with Antioxidant and Antimicrobial Properties, Mater. Chem. Horizons 1(1) (2022) 35-48.
[10] L. Wang, J. Cao, T. Liu, Z. Xu, B. Yang, T. Huang, X. Jiang, N. Wu, Recent advances on the magnetic nanoparticle–based
nanocomposites for magnetic induction hyperthermia of tumor: a short review, Adv. Compos. Hybrid Mater. 4(4) (2021) 925-937.
[11] W. Jia, Y. Qi, Z. Hu, Z. Xiong, Z. Luo, Z. Xiang, J. Hu, W. Lu, Facile fabrication of monodisperse CoFe
2O4
nanocrystals@dopamine@DOX hybrids for magnetic-responsive on-demand cancer theranostic applications, Adv. Compos. Hybrid Mater. 4(4) (2021) 989-1001.
[12] S. Hajebi, S. Yousefiasl, I. Rahimmanesh, A. Dahim, S. Ahmadi, F.B. Kadumudi, N. Rahgozar, S. Amani, A. Kumar, E. Kamrani, Genetically Engineered Viral Vectors and Organic
Based NonViral Nanocarriers for Drug Delivery Applications, Adv. Healthc. Mater. (2022) 2201583.
[13] Z. Cheng, S. Liu, X. Wu, F. Raza, Y. Li, W. Yuan, M. Qiu, J. Su, Autologous erythrocytes delivery of berberine hydrochloride with long-acting effect for hypolipidemia treatment, Drug Deliv. 27(1) (2020) 283-291.
[14] Y. Lian, X. Wang, P. Guo, Y. Li, F. Raza, J. Su, M. Qiu, Erythrocyte membrane-coated arsenic trioxide-loaded sodium alginate nanoparticles for tumor therapy, Pharmaceutics 12(1) (2020) 21.
[15] Z. Hussain, M.A. Rahim, N. Jan, H. Shah, M. Rawas-Qalaji, S. Khan, M. Sohail, H.E. Thu, N.A. Ramli, R.M. Sarfraz, Cell
membrane cloaked nanomedicines for bio-imaging and immunotherapy of cancer: Improved pharmacokinetics, cell
internalization and anticancer efficacy, J Control Release 335 (2021) 130-157.
[16] J. Lopes, D. Lopes, M. Pereira
Silva, D. Peixoto, F. Veiga, M.R. Hamblin, J. Conde, C. Corbo, E.N. Zare, M. Ashrafizadeh,
Macrophage Cell Membrane
Cloaked Nanoplatforms for Biomedical Applications, Small Methods (2022) 2200289.
[17] I. Ferreira-Faria, S. Yousefiasl, A. Macário-Soares, M. Pereira-Silva, D. Peixoto, H. Zafar, F. Raza, H. Faneca, F. Veiga, et
al.Hamblin, Stem cell membrane-coated abiotic nanomaterials for biomedical applications, J Control Release 351(2022)174-197.
[18] H.-Y. Chen, J. Deng, Y. Wang, C.-Q. Wu, X. Li, H.-W. Dai, Hybrid cell membrane-coated nanoparticles: A multifunctional biomimetic platform for cancer diagnosis and therapy, Acta biomater. 112 (2020) 1-13.
[19] X. Wu, Y. Li, F. Raza, X. Wang, S. Zhang, R. Rong, M. Qiu, J. Su, Red Blood Cell Membrane-Camouflaged Tedizolid
Phosphate-Loaded PLGA Nanoparticles for Bacterial-Infection Therapy, Pharmaceutics 13(1) (2021) 99.
[20] E. Xu, X. Wu, X. Zhang, K. Zul, F. Raza, J. Su, M. Qiu, Study on the protection of dextran on erythrocytes during drug loading, Colloids Surf. B: Biointerfaces. 189 (2020) 110882.
[21] Z. Chen, Z. Wang, Z. Gu, Bioinspired and biomimetic nanomedicines, Acc. Chem. Res. 52(5) (2019) 1255-1264.
[22] V. Vijayan, S. Uthaman, I.-K. Park, Cell Membrane-Camouflaged Nanoparticles: A Promising Biomimetic Strategy for Cancer Theragnostics, Polymers 10(9) (2018) 983.
[23] Q. Xia, Y. Zhang, Z. Li, X. Hou, N. Feng, Red blood cell membrane-camouflaged nanoparticles: A novel drug delivery system for antitumor application, Acta Pharm. Sin. B. B 9(4) (2019) 675-689.
[24] Z. Kamal, J. Su, W. Yuan, F. Raza, L. Jiang, Y. Li, M.Qiu, Technology, Red blood cell membrane-camouflaged vancomycin and chlorogenic acid-loaded gelatin nanoparticles against multi-drug resistance infection mice model, J Drug Deliv Sci Technol. 76 (2022) 103706.
[25] R. Rong, F. Raza, Y. Liu, W.-e. Yuan, J. Su, M.Qiu, Biopharmaceutics, Blood cell-based drug delivery systems: a biomimetic platform for antibacterial therapy, Eur. J. Pharm. Biopharm. 177(2022) 273-288.
[26] M. Fan, M. Jiang, Core-shell nanotherapeutics with leukocyte membrane camouflage for biomedical applications, J Drug Deliv Sci Technol. 28(9) (2020) 873-881.
[27] J. Feng, S. Wang, Y. Wang, L. Wang, Stem cell membrane–camouflaged bioinspired nanoparticles for targeted photodynamic therapy of lung cancer, J. Nanoparticle Res. 22(7) (2020) 1-11.
[28] S.S. Kunde, S. Wairkar, Platelet membrane camouflaged nanoparticles: biomimetic architecture for targeted therapy, Int. J. Pharm. 598 (2021) 120395.
[29] S. Ghosh, K. Girigoswami, A. Girigoswami, Membrane-encapsulated camouflaged nanomedicines in drug delivery,
Nanomedicine 14(15) (2019) 2067-2082.
[30] M. Perreau, R. Banga, G.J.T.i.m.m. Pantaleo, Targeted immune interventions for an HIV-1 cure, Trends Mol Med 23(10) (2017) 945-961.
[31] E.M. Campbell, T.J.J.N.R.M. Hope, HIV-1 capsid: the multifaceted key player in HIV-1 infection, Nat Rev Microbiol. 13(8) (2015) 471-483.
[32] M.S. Dahabieh, E. Battivelli, E.J.A.Verdin, Understanding HIV latency: the road to an HIV cure, Annu Rev Med.66 (2015) 407- 421.
[33] N. Rabiee, Y. Fatahi, S. Ahmadi, N. Abbariki, A. Ojaghi, M. Rabiee, F. Radmanesh, R. Dinarvand, M. Bagherzadeh, E.
Mostafavi, Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARSCoV-2 spike antigen, Sci Total Environ 825 (2022) 153902.
[34] C. Beyrer, A.J.N.E.J.o.M. Pozniak, HIV drug resistance—an emerging threat to epidemic control, N Engl J Med 377(17) (2017) 1605-1607.
[35] L. Xu, A. Pegu, E. Rao, N. Doria-Rose, J. Beninga, K. McKee, D.M. Lord, R.R. Wei, G. Deng, M.J.S. Louder, Trispecific
broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques, Science 358(6359) (2017) 85-90.
[36] L.E. McCoy, D.R.J.I.r. Burton, Identification and specificity of broadly neutralizing antibodies against HIV, Immunol Rev 275(1) (2017) 11-20.
[37] G.K. Lewis, M. Pazgier, A.L.J.I.r. DeVico, Survivors remorse: antibody
mediated protection against HIV1, Immunol Rev
275(1) (2017) 271-284.
[38] D.K. Wijesundara, C. Ranasinghe, B. Grubor-Bauk, E.J.J.F.i.M. Gowans, Emerging targets for developing T cell-mediated vaccines for human immunodeficiency virus (HIV)-1, Front Microbiol 8 (2017) 2091.
[39] M.S. Gebre, L.A. Brito, L.H. Tostanoski, D.K. Edwards, A. Carfi, D.H.J.C. Barouch, Novel approaches for vaccine
development,Cell 184(6) (2021) 1589-1603.
[40] J.J. Glass, S.J. Kent, R.J.E.R.o.V. De Rose, Enhancing dendritic cell activation and HIV vaccine effectiveness through
nanoparticle vaccination, Expert Rev Vaccines. 15(6) (2016) 719-729.
[41] J. das Neves, R. Nunes, F. Rodrigues, B.J.A.D.D.R. Sarmento, Nanomedicine in the development of anti-HIV microbicides, Adv Drug Deliv Rev 103 (2016) 57-75.
[42] L.N. Ramana, A.R. Anand, S. Sethuraman, U.M.J.J.o.c.r. Krishnan, Targeting strategies for delivery of anti-HIV drugs, J Control Release 192 (2014) 271-283.
[43] S.K. Adesina, E.O.J.M.p. Akala, Nanotechnology approaches for the delivery of exogenous siRNA for HIV therapy, Mol.
Pharmaceutics 12(12) (2015) 4175-4187.
[44] V. Mishra, P. Kesharwani, N.K.J.D.D.T. Jain, siRNA nanotherapeutics: a Trojan horse approach against HIV, Drug Discov
19(12) (2014) 1913-1920.
[45] J.H. Park, A. Mohapatra, J. Zhou, M. Holay, N. Krishnan, W. Gao, R.H. Fang, L.J.A.C. Zhang, Virus
mimicking cell membranecoated nanoparticles for cytosolic delivery of mRNA, Angew Chem Int Ed Engl 134(2) (2022) e202113671.
[46] J.A. Copp, R.H. Fang, B.T. Luk, C.-M.J. Hu, W. Gao, K. Zhang, L.J.P.o.t.N.A.o.S. Zhang, Clearance of pathological antibodies using biomimetic nanoparticles, PNAS 111(37) (2014) 13481-13486.
[47] S. Thamphiwatana, P. Angsantikul, T. Escajadillo, Q. Zhang, J. Olson, B.T. Luk, S. Zhang, R.H. Fang, W. Gao, V.J.P.o.t.N.A.o.S. Nizet, Macrophage-like nanoparticles concurrently absorbing endotoxins and proinflammatory cytokines for sepsis management, PNAS 114(43) (2017) 11488-11493.
[48] H. Gong, Q. Zhang, A. Komarla, S. Wang, Y. Duan, Z. Zhou, F. Chen, R.H. Fang, S. Xu, W.J.N.L. Gao, Nanomaterial
biointerfacing via mitochondrial membrane coating for targeted detoxification and molecular detection, Nano Lett. 21(6) (2021) 2603-2609.
[49] X. Wei, G. Zhang, D. Ran, N. Krishnan, R.H. Fang, W. Gao, S.A. Spector, L.J.A.M. Zhang, T
cellmimicking nanoparticles can neutralize HIV infectivity, Adv Mater. 30(45) (2018) 1802233.
[50] G. Zhang, G.R. Campbell, Q. Zhang, E. Maule, J. Hanna, W. Gao, L. Zhang, S.A.J.M. Spector, CD4+ t cell-mimicking
nanoparticles broadly neutralize hiv-1 and suppress viral replication through autophagy, mBio.11(5) (2020) e00903-20.
[51] J. Zhao, J. Ruan, G. Lv, Q. Shan, Z. Fan, H. Wang, Y. Du, L.J.C. Ling, S.B. Biointerfaces, Cell membrane-based biomimetic
nanosystems for advanced drug delivery in cancer therapy: A comprehensive review, Colloids Surf. B: Biointerfaces (2022)
112503.
[52] L. Liu, X. Bai, M.-V. Martikainen, A. Kårlund, M. Roponen, W. Xu, G. Hu, E. Tasciotti, V.-P.J.N.c. Lehto, Cell membrane
coating integrity affects the internalization mechanism of biomimetic nanoparticles, Nat. Commun 12(1) (2021) 1-12.
[53] M. Plasil, J. Futas, A. Jelinek, P.A. Burger, P.J.F.i.G. Horin, Comparative Genomics of the Major Histocompatibility Complex (MHC) of Felids, Front Genet 13 (2022).