T-cell Membrane-Coated Nanomaterials in Cancer Treatment

Document Type : Review Article

Authors

1 School of Pharmacy Shanghai Jiao Tong University, China

2 Liansn Pharma, Beijing, China

3 Department of Basic Medical Science, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran

Abstract

To date nanoparticles (NPs) have been widely explored for their use in cancer. These are classified as highly efficient drug delivery systems because of their exceptional properties and design flexibility that rendered them highly targeted and safe. However, nanoparticles still face challenges regarding biological stability, non-specificity, recognition as a foreign substance, and speedy clearance that limits their applications in clinical use. To overcome these drawbacks, advanced biomimetic nanotechnology has been proposed using T-cell membrane-coated NPs as superior drug delivery systems which can increase their circulation time and prevent rapid clearance from the body by the immune system. The immune T-cells have specific surface proteins that transfer unique functionality to biomimetic NPs during the membrane extraction and coating process. Such proteins on the T-cells surface provide the nanoparticles various advantages including prolong circulation, increasing the range of drug targets, controlled release, specified cellular interaction, and limited in vivo toxicity. In this review, T-cell membrane-based biomimetic nanosystems, their detailed extraction process, fabrication, coating over NPs, and the applicability of these biomimetic systems in cancer treatment are discussed. In addition, recent applications, future perspectives, and current challenges for their clinical translation are also presented.

Graphical Abstract

T-cell Membrane-Coated Nanomaterials in Cancer Treatment

Keywords


 [1] L.A. Torre, F. Bray, R.L. Siegel, J. Ferlay, J. LortetTieulent, A.J.C.a.c.j.f.c. Jemal, Global cancer statistics, 2012, 65(2) (2015)
87-108.
[2] F.D. Moghaddam, S. Hamedi, M. Dezfulian, Anti-tumor effect of C-phycocyanin from Anabaena sp. ISC55 in inbred BALB/c mice injected with 4T1 breast cancer cell, Comparative Clinical Pathology 25(5) (2016) 947-952.
[3] M.R. Sarfjoo, A. Shad, M. Hassanpour, R.S. Varma, An Overview on New Anticancer Drugs Approved by Food and Drug
Administration: Impending Economic and Environmental Challenges, Mater. Chem. Horizons 2022 in press
10.22128/MCH.2022.588.1019.
[4] A. Moammeri, K. Abbaspour, A. Zafarian, E. Jamshidifar, H. Motasadizadeh, F. Dabbagh Moghaddam, Z. Salehi, P. Makvandi, R. Dinarvand, pH-Responsive, Adorned Nanoniosomes for Codelivery of Cisplatin and Epirubicin: Synergistic Treatment of Breast Cancer, ACS applied bio materials 5(2) (2022) 675-690.
[5] P. Makvandi, R. Jamaledin, G. Chen, Z. Baghbantaraghdari, E.N. Zare, C. Di Natale, V. Onesto, R. Vecchione, J. Lee, F.R.
Tay, Stimuli-responsive transdermal microneedle patches, Materials Today 47 (2021) 206-222.
[6] Y. Liu, P. Lei, X. Liao, C. Wang, Nanoscale metal–organic frameworks as smart nanocarriers for cancer therapy, Journal of Nanostructure in Chemistry (2022) 1-19.
[7] N. Movagharnezhad, S. Ehsanimehr, P. Najafi Moghadam, Synthesis of Poly (N-vinylpyrrolidone)-grafted-Magnetite
Bromoacetylated Cellulose via ATRP for Drug Delivery, Materials Chemistry Horizons 1(2) (2022) 89-98.
[8] X. Hu, K. Saravanakumar, A. Sathiyaseelan, V. Rajamanickam, M.-H. Wang, Cytotoxicity of aptamer-conjugated chitosan encapsulated mycogenic gold nanoparticles in human lung cancer cells, Journal of Nanostructure in Chemistry (2021) 1-13.
[9] F. Dabbagh Moghaddam, F. Romana Bertani, Application of Microfluidic Platforms in Cancer Therapy, Materials Chemistry Horizons 1(1) (2022) 69-88.
[10] Y.-F. Sun, W. Guo, Y. Xu, Y.-H. Shi, Z.-J. Gong, Y. Ji, M. Du, X. Zhang, B. Hu, A.J.C.C.R. Huang, Circulating tumor cells
from different vascular sites exhibit spatial heterogeneity in epithelial and mesenchymal composition and distinct clinical
significance in hepatocellular carcinoma, 24(3) (2018) 547-559.
[11] X.H. Gao, L. Tian, J. Wu, X.L. Ma, C.Y. Zhang, Y. Zhou, Y.F. Sun, B. Hu, S.j. Qiu, J.J.H.R. Zhou, Circulating CD14+ HLA

DR-/low myeloidderived suppressor cells predicted early recurrence of hepatocellular carcinoma after surgery, 47(10) (2017) 1061-1071.
[12] M. Aquib, M.A. Farooq, P. Banerjee, F. Akhtar, M.S. Filli, K.O. Boakye
Yiadom, S. Kesse, F. Raza, M.B. Maviah, R.
Mavlyanova, Targeted and stimuli–responsive mesoporous silica nanoparticles for drug delivery and theranostic use, Journal of Biomedical Materials Research Part A 107(12) (2019) 2643-2666.
[13] S. Gulla, D. Lomada, P.B. Araveti, A. Srivastava, M.K. Murikinati, K.R. Reddy, M.C. Reddy, T. Altalhi, Titanium dioxide
nanotubes conjugated with quercetin function as an effective anticancer agent by inducing apoptosis in melanoma cells, Journal of Nanostructure in Chemistry 11(4) (2021) 721-734.
[14] K. Asifullah, Z. Zhou, W. He, K. Gao, M.W. Khan, R. Faisal, H. Muhammad, M. Sun, CXCR4-Receptor-Targeted Liposomes
for the Treatment of Peritoneal Fibrosis, Molecular pharmaceutics 16(6) (2019) 2728-2741.
[15] F. Raza, H. Zafar, X. You, A. Khan, J. Wu, L. Ge, Cancer nanomedicine: focus on recent developments and self-assembled peptide nanocarriers, Journal of Materials Chemistry B 7(48) (2019) 7639-7655.
[16] F. Raza, Y. Zhu, L. Chen, X. You, J. Zhang, A. Khan, M.W. Khan, M. Hasnat, H. Zafar, J. Wu, Paclitaxel-loaded pH responsive hydrogel based on self-assembled peptides for tumor targeting, Biomaterials science 7(5) (2019) 2023-2036.
[17] H. Zafar, M.H. Kiani, F. Raza, A. Rauf, I. Chaudhery, N.M. Ahmad, S. Akhtar, G. Shahnaz, Design of enzyme decorated
mucopermeating nanocarriers for eradication of H. pylori infection, Journal of Nanoparticle Research 22(1) (2020) 1-21.
[18] Y. Zhu, L. Wang, Y. Li, Z. Huang, S. Luo, Y. He, H. Han, F. Raza, J. Wu, L. Ge, Injectable pH and redox dual responsive
hydrogel based on self-assembled peptides for anti-tumor drug delivery, Biomaterials science 8 (2020) 5415-5426.
[19] C.-M.J. Hu, R.H. Fang, K.-C. Wang, B.T. Luk, S. Thamphiwatana, D. Dehaini, P. Nguyen, P. Angsantikul, C.H. Wen,
A.V.J.N. Kroll, Nanoparticle biointerfacing by platelet membrane cloaking, 526(7571) (2015) 118-121.
[20] L. Rao, Q.F. Meng, Q. Huang, Z. Wang, G.T. Yu, A. Li, W. Ma, N. Zhang, S.S. Guo, X.Z.J.A.F.M. Zhao, Platelet–leukocyte
hybrid membrane
coated immunomagnetic beads for highly efficient and highly specific isolation of circulating tumor cells, 28(34) (2018) 1803531.
[21] H. Sun, J. Su, Q. Meng, Q. Yin, L. Chen, W. Gu, Z. Zhang, H. Yu, P. Zhang, S.J.A.F.M. Wang, Cancer cell membranecoated gold nanocages with hyperthermiatriggered drug release and homotypic target inhibit growth and metastasis of breast cancer, 27(3) (2017) 1604300.
[22] Z. Cheng, S. Liu, X. Wu, F. Raza, Y. Li, W. Yuan, M. Qiu, J. Su, Autologous erythrocytes delivery of berberine hydrochloride with long-acting effect for hypolipidemia treatment, Drug delivery 27(1) (2020) 283-291.
[23] Y. Lian, X. Wang, P. Guo, Y. Li, F. Raza, J. Su, M. Qiu, Erythrocyte membrane-coated arsenic trioxide-loaded sodium alginate nanoparticles for tumor therapy, Pharmaceutics 12(1) (2020) 21.
[24] F. Raza, H. Zafar, S. Zhang, Z. Kamal, J. Su, W.E. Yuan, Q. Mingfeng, Recent Advances in Cell Membrane
Derived
Biomimetic Nanotechnology for Cancer Immunotherapy, Advanced Healthcare Materials 10(6) (2021) 2002081.
[25] X. Wu, Y. Li, F. Raza, X. Wang, S. Zhang, R. Rong, M. Qiu, J. Su, Red Blood Cell Membrane-Camouflaged Tedizolid
Phosphate-Loaded PLGA Nanoparticles for Bacterial-Infection Therapy, Pharmaceutics 13(1) (2021) 99.
[26] E. Xu, X. Wu, X. Zhang, K. Zul, F. Raza, J. Su, M. Qiu, Study on the protection of dextran on erythrocytes during drug
loading, Colloids and Surfaces B: Biointerfaces 189 (2020) 110882.
[27] S.A. Grupp, M. Kalos, D. Barrett, R. Aplenc, D.L. Porter, S.R. Rheingold, D.T. Teachey, A. Chew, B. Hauck, J.F.J.N.E.J.o.M.
Wright, Chimeric antigen receptor–modified T cells for acute lymphoid leukemia, 368(16) (2013) 1509-1518.
[28] R.J. Brentjens, I. Riviere, J.H. Park, M.L. Davila, X. Wang, J. Stefanski, C. Taylor, R. Yeh, S. Bartido, O.J.B. Borquez-Ojeda,
The Journal of the American Society of Hematology, Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias, 118(18) (2011) 4817-4828.
[29] J.N. Kochenderfer, M.E. Dudley, S.A. Feldman, W.H. Wilson, D.E. Spaner, I. Maric, M. Stetler-Stevenson, G.Q. Phan, M.S.
Hughes, R.M.J.B. Sherry, The Journal of the American Society of Hematology, B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor–transduced T cells, 119(12) (2012) 2709-2720.
[30] N. Ahmed, V.S. Brawley, M. Hegde, C. Robertson, A. Ghazi, C. Gerken, E. Liu, O. Dakhova, A. Ashoori, A.J.J.o.c.o. Corder, Human epidermal growth factor receptor 2 (HER2)–specific chimeric antigen receptor–modified T cells for the immunotherapy of HER2-positive sarcoma, 33(15) (2015) 1688.
[31] S. Katz, G.R. Point, M. Cunetta, M. Thorn, P. Guha, N.J. Espat, C. Boutros, N. Hanna, R.P.J.C.g.t. Junghans, Regional CART cell infusions for peritoneal carcinomatosis are superior to systemic delivery, 23(5) (2016) 142-148.
[32] K. Feng, Y. Guo, H. Dai, Y. Wang, X. Li, H. Jia, W.J.S.C.l.s. Han, Chimeric antigen receptor-modified T cells for the
immunotherapy of patients with EGFR-expressing advanced relapsed/refractory non-small cell lung cancer, 59(5) (2016) 468- 479.
[33] T.T.B. Ho, A. Nasti, A. Seki, T. Komura, H. Inui, T. Kozaka, Y. Kitamura, K. Shiba, T. Yamashita, T. Yamashita, E.
Mizukoshi, K. Kawaguchi, T. Wada, M. Honda, S. Kaneko, Y. Sakai, Combination of gemcitabine and anti-PD-1 antibody
enhances the anticancer effect of M1 macrophages and the Th1 response in a murine model of pancreatic cancer liver metastasis, Journal for immunotherapy of cancer 8(2) (2020).
[34] I.R.J.J.o.a. Cohen, Activation of benign autoimmunity as both tumor and autoimmune disease immunotherapy: a
comprehensive review, 54 (2014) 112-117.
[35] B.V. Kumar, T.J. Connors, D.L.J.I. Farber, Human T cell development, localization, and function throughout life, 48(2) (2018) 202-213.
[36] R.A. Clark, T.S.J.B. Kupper, IL-15 and dermal fibroblasts induce proliferation of natural regulatory T cells isolated from
human skin, 109(1) (2007) 194-202.
[37] E.J. Moticka, Chapter 27 - T-Lymphocyte-Mediated Effector Mechanisms, in: E.J. Moticka (Ed.), A Historical Perspective on Evidence-Based Immunology, Elsevier, Amsterdam, 2016, pp. 235-242.
[38] J.J. Thome, N. Yudanin, Y. Ohmura, M. Kubota, B. Grinshpun, T. Sathaliyawala, T. Kato, H. Lerner, Y. Shen, D.L.J.C. Farber, Spatial map of human T cell compartmentalization and maintenance over decades of life, 159(4) (2014) 814-828.
[39] N.A. Young, T. Al-Saleem, CHAPTER 24 - Lymph Nodes: Cytomorphology and Flow Cytometry, in: M. Bibbo, D. Wilbur
(Eds.), Comprehensive Cytopathology (Third Edition), W.B. Saunders, Edinburgh, 2008, pp. 671-711.
[40] J.H. Krouse, Chapter 1 - Introduction to Allergy, in: J.H. Krouse, M.J. Derebery, S.J. Chadwick (Eds.), Managing the Allergic Patient, W.B. Saunders, Edinburgh, 2008, pp. 1-17.
[41] C.M. Mousset, W. Hobo, R. Woestenenk, F. Preijers, H. Dolstra, A.B. van der Waart, Comprehensive phenotyping of T cells using flow cytometry, Cytometry Part A 95(6) (2019) 647-654.
[42] S.S. Shobeiri, M. MohammadniaAfrouzi, N. Jafari, S. Abediankenari, Regulatory T Cells: Types, Generation and Function, Journal of Mazandaran University of Medical Sciences 24(117) (2014) 225-246.
[43] A.D. Fesnak, C.H. June, B.L. Levine, Engineered T cells: the promise and challenges of cancer immunotherapy, Nature
reviews cancer 16(9) (2016) 566-581.
[44] M. Chmielewski, H. Abken, TRUCKs: the fourth generation of CARs, Expert opinion on biological therapy 15(8) (2015)
1145-1154.
[45] J. Hartmann, M. Schüßler
Lenz, A. Bondanza, C.J. Buchholz, Clinical development of CAR T cells—challenges and
opportunities in translating innovative treatment concepts, EMBO molecular medicine 9(9) (2017) 1183-1197.
[46] K. Tsougeni, G. Papadakis, M. Gianneli, A. Grammoustianou, V. Constantoudis, B. Dupuy, P. Petrou, S. Kakabakos, A.
Tserepi, E.J.L.o.a.C. Gizeli, Plasma nanotextured polymeric lab-on-a-chip for highly efficient bacteria capture and lysis, 16(1) (2016) 120-131.
[47] J.R. Buser, X. Zhang, S. Byrnes, P. Ladd, E. Heiniger, M. Wheeler, J. Bishop, J. Englund, B. Lutz, B.J.A.M. Weigl, A
disposable chemical heater and dry enzyme preparation for lysis and extraction of DNA and RNA from microorganisms, 8(14) (2016) 2880-2886.
[48] J. Reboud, Y. Bourquin, R. Wilson, G.S. Pall, M. Jiwaji, A.R. Pitt, A. Graham, A.P. Waters, J.M.J.P.o.t.N.A.o.S. Cooper,
Shaping acoustic fields as a toolset for microfluidic manipulations in diagnostic technologies, 109(38) (2012) 15162-15167.
[49] R.M. Taskova, H. Zorn, U. Krings, H. Bouws, R.G.J.Z.f.N.C. Berger, A comparison of cell wall disruption techniques for the isolation of intracellular metabolites from Pleurotus and Lepista sp, 61(5-6) (2006) 347-350.
[50] C.W. Ho, W.S. Tan, W.B. Yap, T.C. Ling, B.T.J.B. Tey, B. engineering, Comparative evaluation of different cell disruption
methods for the release of recombinant hepatitis B core antigen from Escherichia coli, 13(5) (2008) 577-583.
[51] L. Rao, B. Cai, L.-L. Bu, Q.-Q. Liao, S.-S. Guo, X.-Z. Zhao, W.-F. Dong, W.J.A.N. Liu, Microfluidic electroporationfacilitated synthesis of erythrocyte membrane-coated magnetic nanoparticles for enhanced imaging-guided cancer therapy, 11(4) (2017) 3496-3505.
[52] A.K.A. Silva, R. Di Corato, T. Pellegrino, S. Chat, G. Pugliese, N. Luciani, F. Gazeau, C.J.N. Wilhelm, Cell-derived vesicles
as a bioplatform for the encapsulation of theranostic nanomaterials, 5(23) (2013) 11374-11384.
[53] B. Liu, W. Wang, J. Fan, Y. Long, F. Xiao, M. Daniyal, C. Tong, Q. Xie, Y. Jian, B. Li, X. Ma, W. Wang, RBC membrane
camouflaged prussian blue nanoparticles for gamabutolin loading and combined chemo/photothermal therapy of breast cancer, Biomaterials 217 (2019) 119301.
[54] Y. Zhai, J. Su, W. Ran, P. Zhang, Q. Yin, Z. Zhang, H. Yu, Y. Li, Preparation and application of cell membrane-camouflaged nanoparticles for cancer therapy, Theranostics 7 (2017) 2575-2592.
[55] Y. Zhang, K. Cai, C. Li, Q. Guo, Q. Chen, X. He, L. Liu, Y. Zhang, Y. Lu, X. Chen, T. Sun, Y. Huang, J. Cheng, C. Jiang,
Macrophage-Membrane-Coated Nanoparticles for Tumor-Targeted Chemotherapy, Nano Letters 18(3) (2018) 1908-1915.
[56] H. Cao, Z. Dan, X. He, Z. Zhang, H. Yu, Q. Yin, Y. Li, Liposomes Coated with Isolated Macrophage Membrane Can Target Lung Metastasis of Breast Cancer, ACS Nano 10(8) (2016) 7738-7748.
[57] M.G. Rudolph, R.L. Stanfield, I.A. Wilson, How TCRs bind MHCs, peptides, and coreceptors, Annu Rev Immunol 24 (2006) 419-66.
[58] P.G. Coulie, B.J. Van den Eynde, P. van der Bruggen, T. Boon, Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy, Nat Rev Cancer 14(2) (2014) 135-46.
[59] Y. Zhu, J. Feijen, Z. Zhong, Dual-targeted nanomedicines for enhanced tumor treatment, Nano Today 18 (2018) 65-85.
[60] M. Chidambaram, R. Manavalan, K. Kathiresan, Nanotherapeutics to overcome conventional cancer chemotherapy
limitations, J Pharm Pharm Sci 14(1) (2011) 67-77.
[61] S. Yaman, H. Ramachandramoorthy, G. Oter, D. Zhukova, T. Nguyen, M.K. Sabnani, J.A. Weidanz, K.T. Nguyen, Melanoma Peptide MHC Specific TCR Expressing T-Cell Membrane Camouflaged PLGA Nanoparticles for Treatment of Melanoma Skin Cancer, Frontiers in bioengineering and biotechnology 8 (2020) 943.
[62] K. Esfahani, L. Roudaia, N. Buhlaiga, S.V. Del Rincon, N. Papneja, W.H. Miller, A Review of Cancer Immunotherapy: From the Past, to the Present, to the Future, Current Oncology 2020, Vol. 27, Pages 87-97 27 (2020) 87-97.
[63] P. Gong, Y. Wang, P. Zhang, Z. Yang, W. Deng, Z. Sun, M. Yang, X. Li, G. Ma, G. Deng, S. Dong, L. Cai, W. Jiang,
Immunocyte membrane-coated nanoparticles for cancer immunotherapy, Cancers 13 (2021) 1-17.
[64] M. Kang, J. Hong, M. Jung, S.P. Kwon, S.Y. Song, H.Y. Kim, J.R. Lee, S. Kang, J. Han, J.H. Koo, J.H. Ryu, S. Lim, H.S.
Sohn, J.M. Choi, J. Doh, B.S. Kim, T-Cell-Mimicking Nanoparticles for Cancer Immunotherapy, Advanced Materials 32
(2020).
[65] L. Rao, S.K. Zhao, C. Wen, R. Tian, L. Lin, B. Cai, Y. Sun, F. Kang, Z. Yang, L. He, J. Mu, Q.F. Meng, G. Yao, N. Xie, X.
Chen, Activating Macrophage-Mediated Cancer Immunotherapy by Genetically Edited Nanoparticles, Advanced Materials 32 (2020) 2004853.
[66] Y. Zhai, J. Wang, T. Lang, Y. Kong, R. Rong, Y. Cai, W. Ran, F. Xiong, C. Zheng, Y. Wang, Y. Yu, H.H. Zhu, P. Zhang, Y.
Li, T lymphocyte membrane-decorated epigenetic nanoinducer of interferons for cancer immunotherapy, Nat Nanotechnol 16(11) (2021) 1271-1280.
[67] Z. Yang, Z. Sun, Y. Ren, X. Chen, W. Zhang, X. Zhu, Z. Mao, J. Shen, S. Nie, Advances in nanomaterials for use in
photothermal and photodynamic therapeutics (Review), Molecular medicine reports 20(1) (2019) 5-15.
[68] S. Liao, W. Yue, S. Cai, Q. Tang, W. Lu, L. Huang, T. Qi, J. Liao, Improvement of Gold Nanorods in Photothermal Therapy: Recent Progress and Perspective, Front Pharmacol 12 (2021) 664123.
[69] W. Ma, D. Zhu, J. Li, X. Chen, W. Xie, X. Jiang, L. Wu, G. Wang, Y. Xiao, Z. Liu, F. Wang, A. Li, D. Shao, W. Dong, W.
Liu, Y. Yuan, Coating biomimetic nanoparticles with chimeric antigen receptor T cell-membrane provides high specificity for hepatocellular carcinoma photothermal therapy treatment, Theranostics 10 (2020) 1281-1295.
[70] Y. Han, H. Pan, W. Li, Z. Chen, A. Ma, T. Yin, R. Liang, F. Chen, Y. Ma, Y. Jin, M. Zheng, B. Li, L. Cai, T Cell Membrane
Mimicking Nanoparticles with Bioorthogonal Targeting and Immune Recognition for Enhanced Photothermal Therapy,
Advanced Science 6 (2019) 1-9.
[71] K. Bhatia, Bhumika, A. Das, Combinatorial drug therapy in cancer - New insights, Life sciences 258 (2020) 118134.
[72] M.J. Eblan, A.Z. Wang, Improving chemoradiotherapy with nanoparticle therapeutics, Transl Cancer Res 2(4) (2013) 320- 329.
[73] L. Zhang, R. Li, H. Chen, J. Wei, H. Qian, S. Su, J. Shao, L. Wang, X. Qian, B. Liu, Human cytotoxic T-lymphocyte
membrane-camouflaged nanoparticles combined with low-dose irradiation: A new approach to enhance drug targeting in gastric cancer, International journal of nanomedicine, 2017, pp. 2129-2142.
[74] Y. Zhai, W. Ran, J. Su, T. Lang, J. Meng, G. Wang, P. Zhang, Y. Li, Traceable Bioinspired Nanoparticle for the Treatment of Metastatic Breast Cancer via NIR-Trigged Intracellular Delivery of Methylene Blue and Cisplatin, Adv Mater (2018)
e1802378.
[75] R. Bagherifar, S.H. Kiaie, Z. Hatami, A. Ahmadi, A. Sadeghnejad, B. Baradaran, R. Jafari, Y. Javadzadeh, Nanoparticlemediated synergistic chemoimmunotherapy for tailoring cancer therapy: recent advances and perspectives, Journal of nanobiotechnology 19(1) (2021) 110.
[76] J. Liang, H. Wang, W. Ding, J. Huang, X. Zhou, H. Wang, X. Dong, G. Li, E. Chen, F. Zhou, H. Fan, J. Xia, B. Shen, D. Cai,
P. Lan, H. Jiang, J. Ling, Z. Cheng, X. Liu, J. Sun, Nanoparticle-enhanced chemo-immunotherapy to trigger robust antitumor immunity, Sci Adv 6(35) (2020) eabc3646.
[77] X. Li, W. Zhang, J. Lin, H. Wu, Y. Yao, J. Zhang, C. Yang, T cell membrane cloaking tumor microenvironment-responsive
nanoparticles with a smart "membrane escape mechanism" for enhanced immune-chemotherapy of melanoma, Biomater Sci 9(9) (2021) 3453-3464.
[78] F. Combes, E. Meyer, N.N.J.J.o.C.R. Sanders, Immune cells as tumor drug delivery vehicles, J. Control Release 10(2020)
70-87.