Synthesis, Characterization, Antioxidant and Antibacterial Activities of Zinc Ferrite and Copper Ferrite Nanoparticles

Document Type : Original Article

Authors

1 Department of Basic Medical Science, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran

2 Department of Chemical, Materials & Industrial Production Engineering, University of Naples Federico II, Naples, 80125, Italy

3 Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran

4 Institute for Photonics and Nanotechnologies, National Research Council, Via Fosso del Cavaliere, 100, 00133, Rome, Italy

5 Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA

Abstract

Spinel ferrite nanoparticles have drawn the attention of researchers because of their unique properties and promising applications. To date, very little information is available on the biological activity of spinel ferrites. This study used the coprecipitation technique to synthesize copper ferrite (CuFe2O4) and zinc ferrite (ZnFe2O4) nanoparticles to evaluate their antioxidant and antibacterial activities. The nanoparticles were then characterized using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, vibrating-sample magnetometer, and energy dispersive X-Ray analysis. Agar disk diffusion and 2,2-diphenyl-1-picrylhydrazyl hydrate tests were used to measure the antibacterial and antioxidant properties of copper ferrite and zinc ferrite nanoparticles. The antioxidant activity of copper ferrite and zinc ferrite nanoparticles was 71% and 80%, respectively. Additionally, it was shown that nanoparticles made of copper ferrite and zinc ferrite had a strong antibacterial effect on Escherichia coli and Staphylococcus aureus.

Graphical Abstract

Synthesis, Characterization, Antioxidant and Antibacterial Activities of Zinc Ferrite and Copper Ferrite Nanoparticles

Keywords


 [1] A. Moammeri, K. Abbaspour, A. Zafarian, E. Jamshidifar, H. Motasadizadeh, F. Dabbagh Moghaddam, Z. Salehi, P. Makvandi, R. Dinarvand, pH-Responsive, Adorned Nanoniosomes for Codelivery of Cisplatin and Epirubicin: Synergistic Treatment of Breast Cancer, ACS Appl. Bio Mater. 5(2) (2022) 675-690.
[2] R. Haghniaz, A. Rabbani, F. Vajhadin, T. Khan, R. Kousar, A.R. Khan, H. Montazerian, J. Iqbal, A. Libanori, H.-J. Kim, F.
Wahid, Anti
bacterial and wound healingpromoting effects of zinc ferrite nanoparticles, J. Nanobiotechnology 19(1) (2021) 38.
[3] P. Makvandi, C.-y. Wang, E.N. Zare, A. Borzacchiello, L.-n. Niu, F.R. Tay, Metal-Based Nanomaterials in Biomedical
Applications: Antimicrobial Activity and Cytotoxicity Aspects, Adv. Funct. Mater. 30(22) (2020) 1910021.
[4] S. Shaikh, N. Nazam, S.M.D. Rizvi, K. Ahmad, M.H. Baig, E.J. Lee, I. Choi, Mechanistic Insights into the Antimicrobial
Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance, Int J Mol Sci 20(10) (2019).
[5] F. Ordikhani, N. Zandi, M. Mazaheri, G.A. Luther, M. Ghovvati, A. Akbarzadeh, N. Annabi, Targeted nanomedicines for the treatment of bone disease and regeneration, Med. Res. Rev. 41(3) (2021) 1221-1254.
[6] M. Naghdi, M. Ghovvati, N. Rabiee, S. Ahmadi, N. Abbariki, S. Sojdeh, A. Ojaghi, M. Bagherzadeh, O. Akhavan, E. Sharifi, M. Rabiee, M.R. Saeb, K. Bolouri, T.J. Webster, E.N. Zare, A. Zarrabi, Magnetic nanocomposites for biomedical applications, Adv. Colloid Interface Sci. 308 (2022) 102771.
[7] Z.G. Özdemir, M. Kılıç, Y. Karabul, B.S. Mısırlıo
ğlu, Ö. Çakır, N.D. Kahya, A transition in the electrical conduction
mechanism of CuO/CuFe
2O4 nanocomposites, J. Electroceramics 44(1) (2020) 1-15.
[8] Shyamaldas, M. Bououdina, C. Manoharan, Dependence of structure/morphology on electrical/magnetic properties of
hydrothermally synthesised cobalt ferrite nanoparticles, J. Magn. Magn. Mater. 493 (2020) 165703.
[9] M. Ebrahimi, R. Raeisi Shahraki, S.A. Seyyed Ebrahimi, S.M. Masoudpanah, Magnetic Properties of Zinc Ferrite Nanoparticles Synthesized by Coprecipitation Method, J. Supercond. Nov. Magn. 27(6) (2014) 1587-1592.
[10] M. Amiri, M. Salavati-Niasari, A. Akbari, Magnetic nanocarriers: Evolution of spinel ferrites for medical applications, Adv. Colloid Interface Sci. 265 (2019) 29-44.
[11] K.K. Kefeni, B.B. Mamba, Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater
treatment: Review, Sustainable Materials and Technologies 23 (2020) e00140.
[12] G. Shahane, Superparamagnetic Manganese Ferrite Nanoparticles: Synthesis and Magnetic Properties, J. Nanosci.
Nanotechnol. 1 (2015) 178-182.
[13] T.F. Marinca, I. Chicina
ş, O. Isnard, Structural and magnetic properties of the copper ferrite obtained by reactive milling and heat treatment, Ceram. Int. 39(4) (2013) 4179-4186.
[14] M. Mozaffari, H. Masoudi, Zinc Ferrite Nanoparticles: New Preparation Method and Magnetic Properties, J. Supercond. Nov. Magn. 27(11) (2014) 2563-2567.
[15] M. Atif, S.K. Hasanain, M. Nadeem, Magnetization of sol–gel prepared zinc ferrite nanoparticles: Effects of inversion and particle size, Solid State Commun. 138(8) (2006) 416-421.
[16] D. Thapa, N. Kulkarni, S.N. Mishra, P.L. Paulose, P. Ayyub, Enhanced magnetization in cubic ferrimagnetic CuFe
2O4
nanoparticles synthesized from a citrate precursor: The role of Fe2+, J Phys D Appl Phys. 43(19) (2010) 195004.
[17] F. Li, H. Wang, L. Wang, J. Wang, Magnetic properties of ZnFe
2O4 nanoparticles produced by a low-temperature solid-state reaction method, J. Magn. Magn. Mater. 309(2) (2007) 295-299.
[18] A. Phuruangrat, B. Kuntalue, S. Thongtem, T. Thongtem, Synthesis of cubic CuFe
2O4 nanoparticles by microwavehydrothermal method and their magnetic properties, Mater. Lett. 167 (2016) 65-68.
[19] K. Sathiyamurthy, C. Rajeevgandhi, S. Bharanidharan, P. Sugumar, S. Subashchandrabose, Electrochemical and Magnetic Properties of Zinc Ferrite Nanoparticles through Chemical Co-Precipitation Method, Chemical Data Collections 28 (2020) 100477.
[20] S. Roy, J. Ghose, Mössbauer study of nanocrystalline cubic CuFe
2O4 synthesized by precipitation in polymer matrix, J. Magn. Magn. Mater. 307(1) (2006) 32-37.
[21] S. Kanagesan, M. Hashim, S. AB Aziz, I. Ismail, S. Tamilselvan, N.B. Alitheen, M.K. Swamy, B. Purna Chandra Rao,
Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe
2O4) and Zinc Ferrite (ZnFe2O4) Nanoparticles Synthesized by Sol-Gel Self-Combustion Method, Appl. Sci. 6(9) (2016) 184.
[22] A. Ghahremanloo, E.N. Zare, F. Salimi, P. Makvandi, Electroconductive and photoactive poly(phenylenediamine)s with
antioxidant and antimicrobial activities for potential photothermal therapy, New J. Chem. 46(13) (2022) 6255-6266.
[23] S. Kanagesan, M. Hashim, S. Tamilselvan, N.B. Alitheen, I. Ismail, G. Bahmanrokh, Cytotoxic effect of nanocrystalline
MgFe
2O4 particles for cancer cure, J. Nanomaterials 2013 (2013) Article 165.
[24] S. Krehula, S. Musi
ć, Influence of Mn-dopant on the properties of α-FeOOH particles precipitated in highly alkaline media, J. Alloys Compd. 426(1) (2006) 327-334.
[25] M. Iacob, Sonochemical synthesis of hematite nanoparticles, Chem. J. Mold. 10(1) (2015) 46-51.
[26] F.H. Mulud, N.A. Dahham, I.F. Waheed, Synthesis and Characterization of Copper Ferrite Nanoparticles, IOP Conf. Ser.:
Mater. Sci. Eng. 928(7) (2020) 072125.
[27] P. Thandapani, M. Ramalinga Viswanathan, J.C. Denardin, Magnetocaloric Effect and Universal Curve Behavior in
Superparamagnetic Zinc Ferrite Nanoparticles Synthesized via Microwave-Assisted Co-Precipitation Method, Phys. Status
Solidi B Basic Res. 215(11) (2018) 1700842.
[28] P. Kovacic, R. Somanathan, Nanoparticles: toxicity, radicals, electron transfer, and antioxidants, Methods Mol Biol 1028 (2013) 15-35.
[29] B. Kumar, K. Smita, L. Cumbal, A. Debut, Y. Angulo, Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf, J. Saudi Chem. Soc. 21 (2017) S475-S480.