[1] A. Moammeri, K. Abbaspour, A. Zafarian, E. Jamshidifar, H. Motasadizadeh, F. Dabbagh Moghaddam, Z. Salehi, P. Makvandi, R. Dinarvand, pH-Responsive, Adorned Nanoniosomes for Codelivery of Cisplatin and Epirubicin: Synergistic Treatment of Breast Cancer, ACS Appl. Bio Mater. 5(2) (2022) 675-690.
[2] R. Haghniaz, A. Rabbani, F. Vajhadin, T. Khan, R. Kousar, A.R. Khan, H. Montazerian, J. Iqbal, A. Libanori, H.-J. Kim, F.
Wahid, Anti‐bacterial and wound healing‐promoting effects of zinc ferrite nanoparticles, J. Nanobiotechnology 19(1) (2021) 38.
[3] P. Makvandi, C.-y. Wang, E.N. Zare, A. Borzacchiello, L.-n. Niu, F.R. Tay, Metal-Based Nanomaterials in Biomedical
Applications: Antimicrobial Activity and Cytotoxicity Aspects, Adv. Funct. Mater. 30(22) (2020) 1910021.
[4] S. Shaikh, N. Nazam, S.M.D. Rizvi, K. Ahmad, M.H. Baig, E.J. Lee, I. Choi, Mechanistic Insights into the Antimicrobial
Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance, Int J Mol Sci 20(10) (2019).
[5] F. Ordikhani, N. Zandi, M. Mazaheri, G.A. Luther, M. Ghovvati, A. Akbarzadeh, N. Annabi, Targeted nanomedicines for the treatment of bone disease and regeneration, Med. Res. Rev. 41(3) (2021) 1221-1254.
[6] M. Naghdi, M. Ghovvati, N. Rabiee, S. Ahmadi, N. Abbariki, S. Sojdeh, A. Ojaghi, M. Bagherzadeh, O. Akhavan, E. Sharifi, M. Rabiee, M.R. Saeb, K. Bolouri, T.J. Webster, E.N. Zare, A. Zarrabi, Magnetic nanocomposites for biomedical applications, Adv. Colloid Interface Sci. 308 (2022) 102771.
[7] Z.G. Özdemir, M. Kılıç, Y. Karabul, B.S. Mısırlıoğlu, Ö. Çakır, N.D. Kahya, A transition in the electrical conduction
mechanism of CuO/CuFe2O4 nanocomposites, J. Electroceramics 44(1) (2020) 1-15.
[8] Shyamaldas, M. Bououdina, C. Manoharan, Dependence of structure/morphology on electrical/magnetic properties of
hydrothermally synthesised cobalt ferrite nanoparticles, J. Magn. Magn. Mater. 493 (2020) 165703.
[9] M. Ebrahimi, R. Raeisi Shahraki, S.A. Seyyed Ebrahimi, S.M. Masoudpanah, Magnetic Properties of Zinc Ferrite Nanoparticles Synthesized by Coprecipitation Method, J. Supercond. Nov. Magn. 27(6) (2014) 1587-1592.
[10] M. Amiri, M. Salavati-Niasari, A. Akbari, Magnetic nanocarriers: Evolution of spinel ferrites for medical applications, Adv. Colloid Interface Sci. 265 (2019) 29-44.
[11] K.K. Kefeni, B.B. Mamba, Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater
treatment: Review, Sustainable Materials and Technologies 23 (2020) e00140.
[12] G. Shahane, Superparamagnetic Manganese Ferrite Nanoparticles: Synthesis and Magnetic Properties, J. Nanosci.
Nanotechnol. 1 (2015) 178-182.
[13] T.F. Marinca, I. Chicinaş, O. Isnard, Structural and magnetic properties of the copper ferrite obtained by reactive milling and heat treatment, Ceram. Int. 39(4) (2013) 4179-4186.
[14] M. Mozaffari, H. Masoudi, Zinc Ferrite Nanoparticles: New Preparation Method and Magnetic Properties, J. Supercond. Nov. Magn. 27(11) (2014) 2563-2567.
[15] M. Atif, S.K. Hasanain, M. Nadeem, Magnetization of sol–gel prepared zinc ferrite nanoparticles: Effects of inversion and particle size, Solid State Commun. 138(8) (2006) 416-421.
[16] D. Thapa, N. Kulkarni, S.N. Mishra, P.L. Paulose, P. Ayyub, Enhanced magnetization in cubic ferrimagnetic CuFe2O4
nanoparticles synthesized from a citrate precursor: The role of Fe2+, J Phys D Appl Phys. 43(19) (2010) 195004.
[17] F. Li, H. Wang, L. Wang, J. Wang, Magnetic properties of ZnFe2O4 nanoparticles produced by a low-temperature solid-state reaction method, J. Magn. Magn. Mater. 309(2) (2007) 295-299.
[18] A. Phuruangrat, B. Kuntalue, S. Thongtem, T. Thongtem, Synthesis of cubic CuFe2O4 nanoparticles by microwavehydrothermal method and their magnetic properties, Mater. Lett. 167 (2016) 65-68.
[19] K. Sathiyamurthy, C. Rajeevgandhi, S. Bharanidharan, P. Sugumar, S. Subashchandrabose, Electrochemical and Magnetic Properties of Zinc Ferrite Nanoparticles through Chemical Co-Precipitation Method, Chemical Data Collections 28 (2020) 100477.
[20] S. Roy, J. Ghose, Mössbauer study of nanocrystalline cubic CuFe2O4 synthesized by precipitation in polymer matrix, J. Magn. Magn. Mater. 307(1) (2006) 32-37.
[21] S. Kanagesan, M. Hashim, S. AB Aziz, I. Ismail, S. Tamilselvan, N.B. Alitheen, M.K. Swamy, B. Purna Chandra Rao,
Evaluation of Antioxidant and Cytotoxicity Activities of Copper Ferrite (CuFe2O4) and Zinc Ferrite (ZnFe2O4) Nanoparticles Synthesized by Sol-Gel Self-Combustion Method, Appl. Sci. 6(9) (2016) 184.
[22] A. Ghahremanloo, E.N. Zare, F. Salimi, P. Makvandi, Electroconductive and photoactive poly(phenylenediamine)s with
antioxidant and antimicrobial activities for potential photothermal therapy, New J. Chem. 46(13) (2022) 6255-6266.
[23] S. Kanagesan, M. Hashim, S. Tamilselvan, N.B. Alitheen, I. Ismail, G. Bahmanrokh, Cytotoxic effect of nanocrystalline
MgFe2O4 particles for cancer cure, J. Nanomaterials 2013 (2013) Article 165.
[24] S. Krehula, S. Musić, Influence of Mn-dopant on the properties of α-FeOOH particles precipitated in highly alkaline media, J. Alloys Compd. 426(1) (2006) 327-334.
[25] M. Iacob, Sonochemical synthesis of hematite nanoparticles, Chem. J. Mold. 10(1) (2015) 46-51.
[26] F.H. Mulud, N.A. Dahham, I.F. Waheed, Synthesis and Characterization of Copper Ferrite Nanoparticles, IOP Conf. Ser.:
Mater. Sci. Eng. 928(7) (2020) 072125.
[27] P. Thandapani, M. Ramalinga Viswanathan, J.C. Denardin, Magnetocaloric Effect and Universal Curve Behavior in
Superparamagnetic Zinc Ferrite Nanoparticles Synthesized via Microwave-Assisted Co-Precipitation Method, Phys. Status
Solidi B Basic Res. 215(11) (2018) 1700842.
[28] P. Kovacic, R. Somanathan, Nanoparticles: toxicity, radicals, electron transfer, and antioxidants, Methods Mol Biol 1028 (2013) 15-35.
[29] B. Kumar, K. Smita, L. Cumbal, A. Debut, Y. Angulo, Biofabrication of copper oxide nanoparticles using Andean blackberry (Rubus glaucus Benth.) fruit and leaf, J. Saudi Chem. Soc. 21 (2017) S475-S480.