[1] B. Hazra, S. Biswas, N. Mandal, Antioxidant and free radical scavenging activity of Spondias pinnata, B BMC Complement Altern Med. 8(1) (2008) 63.
[2] R. Sarwar, U. Farooq, A. Khan, S. Naz, S. Khan, A. Khan, A. Rauf, H. Bahadar, R. Uddin, Evaluation of Antioxidant, Free
Radical Scavenging, and Antimicrobial Activity of Quercus incana Roxb, Front.Pharmacol. 6 (2015) 277.
[3] R. Tsao, Chemistry and biochemistry of dietary polyphenols, Nutrients. 2(12) (2010) 1231-46.
[4] B. Halliwell, How to characterize a biological antioxidant, Free Radic.Res.Commun. 9(1) (1990) 1-32.
[5] M. Vardi, N.S. Levy, A.P. Levy, Vitamin E in the prevention of cardiovascular disease: the importance of proper patient
selection, J Lipid Res. 54(9) (2013) 2307-14.
[6] V. Fuchs-Tarlovsky, Role of antioxidants in cancer therapy, Nutrition. 29(1) (2013) 15-21.
[7] M.C. Morris, D.A. Evans, J.L. Bienias, C.C. Tangney, D.A. Bennett, N. Aggarwal, R.S. Wilson, P.A. Scherr, Dietary Intake of
Antioxidant Nutrients and the Risk of Incident Alzheimer Disease in a Biracial Community Study, JAMA. 287(24) (2002)
3230-3237.
[8] M.S. Brewer, Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications, Compr. Rev. Food Sci. Food Saf. 10(4) (2011) 221-247.
[9] M. Pateiro, F.J. Barba, R. Domínguez, A.S. Sant'Ana, A.M. Khaneghah, M. Gavahian, B. Gómez, J.M.J.F.R.I. Lorenzo,
Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review, Food Res. Int. 113 (2018) 156-166.
[10] H. Kumar, K. Bhardwaj, E. Nepovimova, K. Kuča, D.S. Dhanjal, S. Bhardwaj, S.K. Bhatia, R. Verma, D. Kumar, Antioxidant
Functionalized Nanoparticles: A Combat against Oxidative Stress, Nanomaterials. (Basel) 10(7) (2020).
[11] M. Dizdaroglu, P. Jaruga, M. Birincioglu, H. Rodriguez, Free radical-induced damage to DNA: mechanisms and measurement, Free Radic. Biol. Med. 32(11) (2002) 1102-15.
[12] S.C. Lourenço, M. Moldão-Martins, V.D. Alves, Antioxidants of Natural Plant Origins: From Sources to Food Industry
Applications, Molecules. 24(22) (2019).
[13] R. Jamaledin, C.K.Y. Yiu, E.N. Zare, L.-N. Niu, R. Vecchione, G. Chen, Z. Gu, F.R. Tay, P. Makvandi, Advances in
Antimicrobial Microneedle Patches for Combating Infections, Adv Mater. 32(33) (2020) 2002129.
[14] M.C. Christodoulou, J.C. Orellana Palacios, G. Hesami, S. Jafarzadeh, J.M. Lorenzo, R. Domínguez, A. Moreno, M. Hadidi, Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals, Antioxidants. 11(11) (2022) 2213.
[15] C. Wan, Y. Yu, S. Zhou, W. Liu, S. Tian, S. Cao, Antioxidant activity and free radical-scavenging capacity of Gynura
divaricata leaf extracts at different temperatures, Pharmacogn Mag. 7(25) (2011) 40-5.
[16] A. Phaniendra, D.B. Jestadi, L. Periyasamy, Free radicals: properties, sources, targets, and their implication in various diseases, Indian J. Clin. Biochem. 30(1) (2015) 11-26.
[17] K. Schlesier, M. Harwat, V. Böhm, R. Bitsch, Assessment of antioxidant activity by using different in vitro methods, Free Radic. Res. 36(2) (2002) 177-87.
[18] R.P. Fernandes, M.A. Trindade, F.G. Tonin, C.G. Lima, S.M. Pugine, P.E. Munekata, J.M. Lorenzo, M.P. de Melo, Evaluation of antioxidant capacity of 13 plant extracts by three different methods: cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers, J Food Sci. Technol. 53(1) (2016) 451-60.
[19] B.J.R. Gregório, I.I. Ramos, L.M. Magalhães, E.M.P. Silva, S. Reis, M.A. Segundo, Microplate ORAC-pyranine
spectrophotometric assay for high-throughput assessment of antioxidant capacity, Microchem. J. 158 (2020) 105156.
[20] N.R. Bhalodia, P.B. Nariya, R.N. Acharya, V.J. Shukla, In vitro antioxidant activity of hydro alcoholic extract from the fruit pulp of Cassia fistula Linn, Ayu. 34(2) (2013) 209-14.
[21] R.R. Kotha, F.S. Tareq, E. Yildiz, D.L. Luthria, Oxidative Stress and Antioxidants& mdash;A Critical Review on In Vitro
Antioxidant Assays, Antioxidants. 11(12) (2022) 2388.
[22] A. Augustyniak, G. Bartosz, A. Čipak, G. Duburs, L.U. Horáková, W. Łuczaj, M. Majekova, A.D. Odysseos, L. Rackova, E.
Skrzydlewska, M. Stefek, M. Štrosová, G. Tirzitis, P.R. Venskutonis, J. Viskupicova, P.S. Vraka, N. Žarković, Natural and
synthetic antioxidants: An updated overview, Free Radic. Res. 44(10) (2010) 1216-1262.
[23] F. Arriagada, G. Günther, J. Nos, S. Nonell, C. Olea-Azar, J. Morales, Antioxidant Nanomaterial Based on Core–Shell Silica Nanospheres with Surface-Bound Caffeic Acid: A Promising Vehicle for Oxidation-Sensitive Drugs, Nanomaterials. 9(2) (2019) 214.
[24] L. Valgimigli, A. Baschieri, R. Amorati, Antioxidant activity of nanomaterials, J. Mater. Chem. B 6(14) (2018) 2036-2051.
[25] K.U. Ingold, D.A. Pratt, Advances in Radical-Trapping Antioxidant Chemistry in the 21st Century: A Kinetics and
Mechanisms Perspective, Chem. Rev. 114(18) (2014) 9022-9046.
[26] J. Dong, L. Song, J.-J. Yin, W. He, Y. Wu, N. Gu, Y. Zhang, Co3O4 Nanoparticles with Multi-Enzyme Activities and Their
Application in Immunohistochemical Assay, ACS Appl Mater Interfaces. 6(3) (2014) 1959-1970.
[27] M. Zare, M.N. Sarkati, Chitosan-functionalized Fe3O4 nanoparticles as an excellent biocompatible nanocarrier for silymarin delivery, Polym Adv Technol. 32(10) (2021) 4094-4100.
[28] H. Zheng, S. Wang, F. Cheng, X. He, Z. Liu, W. Wang, L. Zhou, Q. Zhang, Bioactive anti-inflammatory, antibacterial,
conductive multifunctional scaffold based on MXene@CeO2 nanocomposites for infection-impaired skin multimodal therapy, Chem. Eng. J. 424 (2021) 130148.
[29] S. Bhagat, N.V. Srikanth Vallabani, V. Shutthanandan, M. Bowden, A.S. Karakoti, S. Singh, Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon, J. Colloid Interface Sci. 513 (2018) 831-842.
[30] X. Zhang, X. Guo, X. Kang, H. Yang, W. Guo, L. Guan, H. Wu, L. Du, Surface Functionalization of Pegylated Gold
Nanoparticles with Antioxidants Suppresses Nanoparticle-Induced Oxidative Stress and Neurotoxicity, Chem. Res. Toxicol.
33(5) (2020) 1195-1205.
[31] F. Wei, X. Cui, Z. Wang, C. Dong, J. Li, X. Han, Recoverable peroxidase-like Fe3O4@MoS2-Ag nanozyme with enhanced antibacterial ability, Chem. Eng. J. 408 (2021) 127240.
[32] Y. Wu, Y. Zhou, H. Xu, Q. Liu, Y. Li, L. Zhang, H. Liu, Z. Tu, X. Cheng, J. Yang, Highly Active, Superstable, and
Biocompatible Ag/Polydopamine/g-C3N4 Bactericidal Photocatalyst: Synthesis, Characterization, and Mechanism, ACS
Sustain.Chem.Eng. 6(11) (2018) 14082-14094.
[33] S.I. Han, S.-w. Lee, M.G. Cho, J.M. Yoo, M.H. Oh, B. Jeong, D. Kim, O.K. Park, J. Kim, E. Namkoong, J. Jo, N. Lee, C.
Lim, M. Soh, Y.-E. Sung, J. Yoo, K. Park, T. Hyeon, Epitaxially Strained CeO2/Mn3O4 Nanocrystals as an Enhanced
Antioxidant for Radioprotection, Adv Mater. 32(31) (2020) 2001566.
[34] X. Zhang, S. Zhang, Z. Yang, Z. Wang, X. Tian, R. Zhou, Self-cascade MoS2 nanozymes for efficient intracellular
antioxidation and hepatic fibrosis therapy, Nanoscale. 13(29) (2021) 12613-12622.
[35] O.K. Savchak, N. Wang, M.A. Ramos-Docampo, P. de Dios Andres, A.M. Sebastião, F.F. Ribeiro, A. Armada-Moreira, B.
Städler, S.H. Vaz, Manganese dioxide nanosheet-containing reactors as antioxidant support for neuroblastoma cells,
J. Mater. Chem. B. 10(24) (2022) 4672-4683.
[36] R. Sriranjani, B. Srinithya, V. Vellingiri, P. Brindha, S.P. Anthony, A. Sivasubramanian, M.S. Muthuraman, Silver
nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities, J. Mol. Liq. 220 (2016) 926-930.
[37] B.K. Thakur, A. Kumar, D. Kumar, Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity, S. Afr. J. Bot. 124 (2019) 223-227.
[38] N.Y. Stozhko, M.A. Bukharinova, E.I. Khamzina, A.V. Tarasov, M.B. Vidrevich, K.Z. Brainina, The Effect of the Antioxidant
Activity of Plant Extracts on the Properties of Gold Nanoparticles, Nanomaterials. 9(12) (2019) 1655.
[39] S. Ahmed, Annu, S.A. Chaudhry, S. Ikram, A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry, J. Photochem. Photobiol. B, Biol. 166 (2017) 272-284.
[40] P. Makvandi, Z. Baghbantaraghdari, W. Zhou, Y. Zhang, R. Manchanda, T. Agarwal, A. Wu, T.K. Maiti, R.S. Varma, B.R.
Smith, Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy, Biotechnol. Adv. 48 (2021)
107711.
[41] N.I. Hulkoti, T.C. Taranath, Biosynthesis of nanoparticles using microbes—A review, Colloids Surf. B.121 (2014) 474-483.
[42] X. Chen, Z. Xue, J. Ji, D. Wang, G. Shi, L. Zhao, S. Feng, Hedysarum polysaccharides mediated green synthesis of gold
nanoparticles and study of its characteristic, analytical merit, catalytic activity, Mater. Res. Bull. 133 (2021) 111070.
[43] E.N. Zare, V.V.T. Padil, B. Mokhtari, A. Venkateshaiah, S. Wacławek, M. Černík, F.R. Tay, R.S. Varma, P. Makvandi,
Advances in biogenically synthesized shaped metal- and carbon-based nanoarchitectures and their medicinal applications, Adv. Colloid Interface Sci. 283 (2020) 102236.
[44] J. Virkutyte, R.S. Varma, Green Synthesis of Nanomaterials: Environmental Aspects, Sustainable Nanotechnology and the Environment: Advances and Achievements, ACS Symp. Ser. Am. Chem. Soc. (2013)11-39.
[45] P. Makvandi, G.W. Ali, F. Della Sala, W.I. Abdel-Fattah, A. Borzacchiello, Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing, Carbohydr. Polym. 223 (2019) 115023.
[46] P. Makvandi, G.W. Ali, F. Della Sala, W.I. Abdel-Fattah, A. Borzacchiello, Hyaluronic acid/corn silk extract based injectable nanocomposite: A biomimetic antibacterial scaffold for bone tissue regeneration, Mater.Sci.Eng.C. 107 (2020) 110195.
[47] N. Nakatani, Phenolic antioxidants from herbs and spices, BioFactors. 13(1-4) (2000) 141-146.
[48] S.-S. Norma Francenia, S.-C. Raúl, V.-C. Claudia, H.-C. Beatriz, Antioxidant Compounds and Their Antioxidant Mechanism, in: S. Emad (Ed.), Antioxidants, IntechOpen. (2019) 1-28.
[49] P.-G. Pietta, Flavonoids as Antioxidants, J.Nat.Prod. 63(7) (2000) 1035-1042.
[50] M.J. del Baño, J. Lorente, J. Castillo, O. Benavente-García, J.A. del Río, A. Ortuño, K.-W. Quirin, D. Gerard, Phenolic
Diterpenes, Flavones, and Rosmarinic Acid Distribution during the Development of Leaves, Flowers, Stems, and Roots of
Rosmarinus officinalis. Antioxidant Activity, J. Agric. Food Chem. 51(15) (2003) 4247-4253.
[51] Y. Zhu, Z. Ma, L. Kong, Y. He, H.F. Chan, H. Li, Modulation of macrophages by bioactive glass/sodium alginate hydrogel is crucial in skin regeneration enhancement, Biomaterials. 256 (2020) 120216.
[52] T.G. Sahana, P.D. Rekha, Biopolymers: Applications in wound healing and skin tissue engineering, Mol. Biol. Rep. 45(6)
(2018) 2857-2867.
[53] Q. Zhong, B. Wei, S. Wang, S. Ke, J. Chen, H. Zhang, H. Wang, The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview, Mar.Drugs.17(12) (2019) 674.
[54] Y. Endo, T. Aota, T. Tsukui, Antioxidant Activity of Alginic Acid in Minced Pork Meat, Food Sci.Technol.Res. 21(6) (2015) 875-878.
[55] F.G. Torres, S. Commeaux, O.P. Troncoso, Starch-based biomaterials for wound-dressing applications, Starch - Stärke. 65(7-8) (2013) 543-551.
[56] T. Spychaj, K. Wilpiszewska, M. Zdanowicz, Medium and high substituted carboxymethyl starch: Synthesis, characterization and application, Starch - Stärke. 65(1-2) (2013) 22-33.
[57] Z. Abdollahi, E.N. Zare, F. Salimi, I. Goudarzi, F.R. Tay, P. Makvandi, Bioactive Carboxymethyl Starch-Based Hydrogels
Decorated with CuO Nanoparticles: Antioxidant and Antimicrobial Properties and Accelerated Wound Healing In Vivo, Int. J. Mol. Sci. 22(5) (2021) 2531.
[58] V. Sindhi, V. Gupta, K. Sharma, S. Bhatnagar, R. Kumari, N. Dhaka, Potential applications of antioxidants–A review,
J.Pharm.Res. 7(9) (2013) 828-835.
[59] M. Wojcik, I. Burzynska-Pedziwiatr, A.L. Wozniak, A Review of Natural and Synthetic Antioxidants Important for Health
and Longevity, Curr. Med. Chem.17(28) (2010) 3262-3288.
[60] A. Muñoz-Acevedo, L.Y. Vargas Méndez, E.E. Stashenko, V.V. Kouznetsov, Improved Trolox® Equivalent Antioxidant
Capacity Assay for Efficient and Fast Search of New Antioxidant Agents, Anal.Chem.Lett.1(1) (2011) 86-102.
[61] B. Bideau, J. Bras, N. Adoui, E. Loranger, C. Daneault, Polypyrrole/nanocellulose composite for food preservation: Barrier and antioxidant characterization, Food Packag. Shelf Life.12 (2017) 1-8.
[62] A. Dhawan, V. Kumar, V.S. Parmar, A.L. Cholli, Properties, Applications, Novel polymeric antioxidants for materials.
Antioxidant Polymers (2012) 385-425.
[63] A. Hodgson, K. Gilmore, C. Small, G.G. Wallace, I.L Mackenzie, T. Aoki, N. Ogata, Reactive supramolecular assemblies of mucopolysaccharide, polypyrrole and protein as controllable biocomposites for a new generation of ‘intelligent biomaterials’. Supramol. Sci. 1(2) (1994) 77-83.
[64] C.R.J.A.o.c.r. Martin, Template synthesis of electronically conductive polymer nanostructures Acc. Chem. Res. 28(2) (1995) 61-68.
[65] A. Deronzier, J.C. Moutet, Functionalized polypyrroles. New molecular materials for electrocatalysis and related applications, Acc. Chem. Res.22(7) (1989) 249-255.
[66] G. Jin, K. Li, The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine, Mater.Sci.Eng.C. 45 (2014) 671-681.
[67] T. Nezakati, A. Seifalian, A. Tan, A.M. Seifalian, Conductive Polymers: Opportunities and Challenges in Biomedical
Applications, Chem. Rev. 118(14) (2018) 6766-6843.
[68] M. Shahadat, S.Z. Ahammad, S.A. Wazed, S. Ismail, Synthesis of Polyaniline-Based Nanocomposite Materials and Their
Biomedical Applications, Electrically Conductive Polymer and Polymer Composites. (2018), 199-218.
[69] V. Hasantabar, M.M. Lakouraj, E.N. Zare, M. Mohseni, Synthesis, Characterization, and Biological Properties of Novel
Bioactive Poly(xanthoneamide-triazole-ethersulfone) and Its Multifunctional Nanocomposite with Polyaniline,
Adv.Polym.Technol. 36(3) (2017) 309-319.
[70] E.N. Zare, P. Makvandi, Antimicrobial metal-based nanomaterials and their industrial and biomedical applications, Engineered Antimicrobial Surfaces.(2020) 123-134.
[71] M. Gizdavic-Nikolaidis, J. Travas-Sejdic, G.A. Bowmaker, R.P. Cooney, C. Thompson, P.A. Kilmartin, The antioxidant
activity of conducting polymers in biomedical applications, Curr.Appl.Phys. 4(2) (2004) 347-350.
[72] A. Saikia, N. Karak, Polyaniline nanofiber/carbon dot nanohybrid as an efficient fluorimetric sensor for As (III) in water and effective antioxidant, Mater. Today Commun. 14 (2018) 82-89.
[73] M. Gizdavic-Nikolaidis, J. Travas-Sejdic, G.A. Bowmaker, R.P. Cooney, P.A. Kilmartin, Conducting polymers as free radical scavengers, Synth. Met. 140(2) (2004) 225-232.
[74] P. Moutsatsou, K. Coopman, S. Georgiadou, Biocompatibility Assessment of Conducting PANI/Chitosan Nanofibers for Wound Healing Applications, Polymers, 9(12) (2017) 687.
[75] J. He, Y. Liang, M. Shi, B. Guo, Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(ε- caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing, Chem. Eng. J. 385 (2020) 123464.
[76] M. Zhang, B. Guo, Electroactive 3D Scaffolds Based on Silk Fibroin and Water-Borne Polyaniline for Skeletal Muscle Tissue Engineering, Macromol. Biosci. 17(9) (2017) 1700147.
[77] B.M. Hryniewicz, R.V. Lima, F. Wolfart, M. Vidotti, Influence of the pH on the electrochemical synthesis of polypyrrole
nanotubes and the supercapacitive performance evaluation, Electrochim. Acta. 293 (2019) 447-457.
[78] E.N. Zare, T. Agarwal, A. Zarepour, F. Pinelli, A. Zarrabi, F. Rossi, M. Ashrafizadeh, A. Maleki, M.-A. Shahbazi, T.K. Maiti,
R.S. Varma, F.R. Tay, M.R. Hamblin, V. Mattoli, P. Makvandi, Electroconductive multi-functional polypyrrole composites for
biomedical applications, Appl. Mater. Today 24 (2021) 101117.
[79] Y. Liang, J.C.-H. Goh, Polypyrrole-Incorporated Conducting Constructs for Tissue Engineering Applications: A Review,
Bioelectricity. 2(2) (2020) 101-119.
[80] Y. Park, J. Jung, M. Chang, Research Progress on Conducting Polymer-Based Biomedical Applications, Appl. Sci. 9(6) (2019) 1070.
[81] J. Upadhyay, A. Kumar, B. Gogoi, A.K. Buragohain, Biocompatibility and antioxidant activity of polypyrrole nanotubes,
Synth. Met. 189 (2014) 119-125.
[82] P. Poprac, K. Jomova, M. Simunkova, V. Kollar, C.J. Rhodes, M. Valko, Targeting free radicals in oxidative stress-related
human diseases Trends Pharmacol. Sci. 38(7) (2017) 592-607.
[83] E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, G. Perale, Progress in Conductive Polyaniline-Based
Nanocomposites for Biomedical Applications: A Review, J. Med. Chem. 63(1) (2020) 1-22.
[84] E.N. Zare, M.M. Lakouraj, M. Mohseni, A. Motahari, Multilayered electromagnetic bionanocomposite based on alginic acid: Characterization and biological activities, Carbohydr. Polym. 130 (2015) 372-380.
[85] Q. Gao, M. Lei, K. Zhou, X. Liu, S. Wang, H. Li, Preparation of a microfibrillated cellulose/chitosan/polypyrrole film for
Active Food Packaging, Prog. Org. Coat. 149 (2020) 105907.
[86] M. Mansour Lakourj, R.-S. Norouzian, M. Esfandyar, S. Ghasemi mir, Conducting nanocomposites of polypyrrole-copolyindole doped with carboxylated CNT: Synthesis approach and anticorrosion/antibacterial/antioxidation property, Mater. Sci. Eng. B.261 (2020) 114673.
[87] A. Somogyi, K. Rosta, P. Pusztai, Z. Tulassay, G. Nagy, Antioxidant measurements, Physiol. Meas. 28(4) (2007) R41.
[88] G. Cao, R.L. Prior, Comparison of different analytical methods for assessing total antioxidant capacity of human serum, Clin. Chem. 44(6 Pt 1) (1998) 1309-15.
[89] M. Ozgen, R.N. Reese, A.Z. Tulio, J.C. Scheerens, A.R. Miller, Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic
Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing
Antioxidant Power (FRAP) and 2,2‘-Diphenyl-1-picrylhydrazyl (DPPH) Methods, J. Agric. Food Chem. 54(4) (2006) 1151-
1157.
[90] N.J. Miller, C. Rice-Evans, M.J. Davies, V. Gopinathan, A. Milner, A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates, Clin.Sci. (London, England: 1979) 84(4) (1993) 407- 12. [91] D.D. Wayner, G.W. Burton, K.U. Ingold, S. Locke, Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins, FEBS lett. 187(1) (1985) 33-7.
[92] G.W. Winston, F. Regoli, A.J. Dugas, J.H. Fong, K.A. Blanchard, A Rapid Gas Chromatographic Assay for Determining
Oxyradical Scavenging Capacity of Antioxidants and Biological Fluids, Free Radic. Biol. Med. 24(3) (1998) 480-493.
[93] V. Hasantabar, M.M. Lakouraj, E.N.Zare, M. Mohseni, Innovative magnetic tri-layered nanocomposites based on
polyxanthone triazole, polypyrrole and iron oxide: synthesis, characterization and investigation of the biological activities, RSC Adv..5(86) (2015) 70186-70196.
[94] E.N. Zare, M.M. Lakouraj, P.N. Moghadam, R. Azimi, Novel polyfuran/functionalized multiwalled carbon nanotubes
composites with improved conductivity: Chemical synthesis, characterization, and antioxidant activity, Polym.Compos. 34(5) (2013) 732-739.
[95] I. Khalil, W.A. Yehye, A.E. Etxeberria, A.A. Alhadi, S.M. Dezfooli, N.B. Julkapli, W.J. Basirun, A. Seyfoddin,
Nanoantioxidants: Recent Trends in Antioxidant Delivery Applications, Antioxidants. 9(1) (2019) 24.