Significance of Antioxidants and Methods to Evaluate Their Potency

Document Type : Review Article

Authors

1 Department of Chemistry, Centre for Research & Innovations, Adichunchanagiri School of Natural Sciences, Adichunchanagiri University, BG Nagara, Mandya District, Karnataka, 571448, India

2 Department of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore, 570006, India

3 Adichunchanagiri Institute for Molecular Medicine, Adichunchanagiri Institute of Medical Sciences, Adichunchanagiri University, BG Nagara, Mandya, India

Abstract

Antioxidants are vital bioactive components which garnered attention of various researchers in the area of in pharmacy, medicine and food engineering. Here we have endeavored our effort to highlight the significance of antioxidants and critical assay methods to analyze the inhibitory activity of the antioxidants. Various in vitro and in vivo assay methods are available to estimate the inhibitory activity of which, hydroxyl radical antioxidant capacity (HORAC) test, the oxygen radical absorption capacity (ORAC) test, the total oxyradical scavenging capacity (TOSC) test and the total peroxyl radical trapping antioxidant parameter (TRAP) test are based on the transfer of hydrogen atom. The ferric reducing antioxidant power (FRAP) test, cupric reducing antioxidant power (CUPRAC) test, and the folin–ciocalteu test are based on transfer of an electron. Whereas, the [2,2-di(4-tert-octylphenyl)-1-picrylhydrazyl] (DPPH) test and, 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) tests are based on transfer of both hydrogen and electron. All these assays preliminarily assess the chemical kinetics to reach the chemical equilibrium state and develop chromogenic color or discoloration or develop fluorescence or quenches the fluorescence which can be analyzed in colorimeter or spectrophotometer respectively. In the present review, we have summarized the synthesis of antioxidant materials and their significance and the assay methods which were employed to estimate the inhibitory activity of the antioxidants.

Graphical Abstract

Significance of Antioxidants and Methods to Evaluate Their Potency

Keywords


 [1] B. Hazra, S. Biswas, N. Mandal, Antioxidant and free radical scavenging activity of Spondias pinnata, B BMC Complement Altern Med. 8(1) (2008) 63.
[2] R. Sarwar, U. Farooq, A. Khan, S. Naz, S. Khan, A. Khan, A. Rauf, H. Bahadar, R. Uddin, Evaluation of Antioxidant, Free
Radical Scavenging, and Antimicrobial Activity of Quercus incana Roxb, Front.Pharmacol. 6 (2015) 277.
[3] R. Tsao, Chemistry and biochemistry of dietary polyphenols, Nutrients. 2(12) (2010) 1231-46.
[4] B. Halliwell, How to characterize a biological antioxidant, Free Radic.Res.Commun. 9(1) (1990) 1-32.
[5] M. Vardi, N.S. Levy, A.P. Levy, Vitamin E in the prevention of cardiovascular disease: the importance of proper patient
selection, J Lipid Res. 54(9) (2013) 2307-14.
[6] V. Fuchs-Tarlovsky, Role of antioxidants in cancer therapy, Nutrition. 29(1) (2013) 15-21.
[7] M.C. Morris, D.A. Evans, J.L. Bienias, C.C. Tangney, D.A. Bennett, N. Aggarwal, R.S. Wilson, P.A. Scherr, Dietary Intake of
Antioxidant Nutrients and the Risk of Incident Alzheimer Disease in a Biracial Community Study, JAMA. 287(24) (2002)
3230-3237.
[8] M.S. Brewer, Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications, Compr. Rev. Food Sci. Food Saf. 10(4) (2011) 221-247.
[9] M. Pateiro, F.J. Barba, R. Domínguez, A.S. Sant'Ana, A.M. Khaneghah, M. Gavahian, B. Gómez, J.M.J.F.R.I. Lorenzo,
Essential oils as natural additives to prevent oxidation reactions in meat and meat products: A review, Food Res. Int. 113 (2018) 156-166.
[10] H. Kumar, K. Bhardwaj, E. Nepovimova, K. Ku
ča, D.S. Dhanjal, S. Bhardwaj, S.K. Bhatia, R. Verma, D. Kumar, Antioxidant
Functionalized Nanoparticles: A Combat against Oxidative Stress, Nanomaterials. (Basel) 10(7) (2020).
[11] M. Dizdaroglu, P. Jaruga, M. Birincioglu, H. Rodriguez, Free radical-induced damage to DNA: mechanisms and measurement, Free Radic. Biol. Med. 32(11) (2002) 1102-15.
[12] S.C. Lourenço, M. Moldão-Martins, V.D. Alves, Antioxidants of Natural Plant Origins: From Sources to Food Industry
Applications, Molecules. 24(22) (2019).
[13] R. Jamaledin, C.K.Y. Yiu, E.N. Zare, L.-N. Niu, R. Vecchione, G. Chen, Z. Gu, F.R. Tay, P. Makvandi, Advances in
Antimicrobial Microneedle Patches for Combating Infections, Adv Mater. 32(33) (2020) 2002129.
[14] M.C. Christodoulou, J.C. Orellana Palacios, G. Hesami, S. Jafarzadeh, J.M. Lorenzo, R. Domínguez, A. Moreno, M. Hadidi, Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals, Antioxidants. 11(11) (2022) 2213.
[15] C. Wan, Y. Yu, S. Zhou, W. Liu, S. Tian, S. Cao, Antioxidant activity and free radical-scavenging capacity of Gynura
divaricata leaf extracts at different temperatures, Pharmacogn Mag. 7(25) (2011) 40-5.
[16] A. Phaniendra, D.B. Jestadi, L. Periyasamy, Free radicals: properties, sources, targets, and their implication in various diseases, Indian J. Clin. Biochem. 30(1) (2015) 11-26.
[17] K. Schlesier, M. Harwat, V. Böhm, R. Bitsch, Assessment of antioxidant activity by using different in vitro methods, Free Radic. Res. 36(2) (2002) 177-87.
[18] R.P. Fernandes, M.A. Trindade, F.G. Tonin, C.G. Lima, S.M. Pugine, P.E. Munekata, J.M. Lorenzo, M.P. de Melo, Evaluation of antioxidant capacity of 13 plant extracts by three different methods: cluster analyses applied for selection of the natural extracts with higher antioxidant capacity to replace synthetic antioxidant in lamb burgers, J Food Sci. Technol. 53(1) (2016) 451-60.
[19] B.J.R. Gregório, I.I. Ramos, L.M. Magalhães, E.M.P. Silva, S. Reis, M.A. Segundo, Microplate ORAC-pyranine
spectrophotometric assay for high-throughput assessment of antioxidant capacity, Microchem. J. 158 (2020) 105156.
[20] N.R. Bhalodia, P.B. Nariya, R.N. Acharya, V.J. Shukla, In vitro antioxidant activity of hydro alcoholic extract from the fruit pulp of Cassia fistula Linn, Ayu. 34(2) (2013) 209-14.
[21] R.R. Kotha, F.S. Tareq, E. Yildiz, D.L. Luthria, Oxidative Stress and Antioxidants& mdash;A Critical Review on In Vitro
Antioxidant Assays, Antioxidants. 11(12) (2022) 2388.
[22] A. Augustyniak, G. Bartosz, A. Čipak, G. Duburs, L.U. Horáková, W. Łuczaj, M. Majekova, A.D. Odysseos, L. Rackova, E.
Skrzydlewska, M. Stefek, M. Štrosová, G. Tirzitis, P.R. Venskutonis, J. Viskupicova, P.S. Vraka, N. Žarkovi
ć, Natural and
synthetic antioxidants: An updated overview, Free Radic. Res. 44(10) (2010) 1216-1262.
[23] F. Arriagada, G. Günther, J. Nos, S. Nonell, C. Olea-Azar, J. Morales, Antioxidant Nanomaterial Based on Core–Shell Silica Nanospheres with Surface-Bound Caffeic Acid: A Promising Vehicle for Oxidation-Sensitive Drugs, Nanomaterials. 9(2) (2019) 214.
[24] L. Valgimigli, A. Baschieri, R. Amorati, Antioxidant activity of nanomaterials, J. Mater. Chem. B 6(14) (2018) 2036-2051.
[25] K.U. Ingold, D.A. Pratt, Advances in Radical-Trapping Antioxidant Chemistry in the 21st Century: A Kinetics and
Mechanisms Perspective, Chem. Rev. 114(18) (2014) 9022-9046.
[26] J. Dong, L. Song, J.-J. Yin, W. He, Y. Wu, N. Gu, Y. Zhang, Co
3O4 Nanoparticles with Multi-Enzyme Activities and Their
Application in Immunohistochemical Assay, ACS Appl Mater Interfaces. 6(3) (2014) 1959-1970.
[27] M. Zare, M.N. Sarkati, Chitosan-functionalized Fe
3O4 nanoparticles as an excellent biocompatible nanocarrier for silymarin delivery, Polym Adv Technol. 32(10) (2021) 4094-4100.
[28] H. Zheng, S. Wang, F. Cheng, X. He, Z. Liu, W. Wang, L. Zhou, Q. Zhang, Bioactive anti-inflammatory, antibacterial,
conductive multifunctional scaffold based on MXene@CeO2 nanocomposites for infection-impaired skin multimodal therapy, Chem. Eng. J. 424 (2021) 130148.
[29] S. Bhagat, N.V. Srikanth Vallabani, V. Shutthanandan, M. Bowden, A.S. Karakoti, S. Singh, Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon, J. Colloid Interface Sci. 513 (2018) 831-842.
[30] X. Zhang, X. Guo, X. Kang, H. Yang, W. Guo, L. Guan, H. Wu, L. Du, Surface Functionalization of Pegylated Gold
Nanoparticles with Antioxidants Suppresses Nanoparticle-Induced Oxidative Stress and Neurotoxicity, Chem. Res. Toxicol.
33(5) (2020) 1195-1205.
[31] F. Wei, X. Cui, Z. Wang, C. Dong, J. Li, X. Han, Recoverable peroxidase-like Fe
3O4@MoS2-Ag nanozyme with enhanced antibacterial ability, Chem. Eng. J. 408 (2021) 127240.
[32] Y. Wu, Y. Zhou, H. Xu, Q. Liu, Y. Li, L. Zhang, H. Liu, Z. Tu, X. Cheng, J. Yang, Highly Active, Superstable, and
Biocompatible Ag/Polydopamine/g-C3N4 Bactericidal Photocatalyst: Synthesis, Characterization, and Mechanism, ACS
Sustain.Chem.Eng. 6(11) (2018) 14082-14094.
[33] S.I. Han, S.-w. Lee, M.G. Cho, J.M. Yoo, M.H. Oh, B. Jeong, D. Kim, O.K. Park, J. Kim, E. Namkoong, J. Jo, N. Lee, C.
Lim, M. Soh, Y.-E. Sung, J. Yoo, K. Park, T. Hyeon, Epitaxially Strained CeO
2/Mn3O4 Nanocrystals as an Enhanced
Antioxidant for Radioprotection, Adv Mater. 32(31) (2020) 2001566.
[34] X. Zhang, S. Zhang, Z. Yang, Z. Wang, X. Tian, R. Zhou, Self-cascade MoS
2 nanozymes for efficient intracellular
antioxidation and hepatic fibrosis therapy, Nanoscale. 13(29) (2021) 12613-12622.
[35] O.K. Savchak, N. Wang, M.A. Ramos-Docampo, P. de Dios Andres, A.M. Sebastião, F.F. Ribeiro, A. Armada-Moreira, B.
Städler, S.H. Vaz, Manganese dioxide nanosheet-containing reactors as antioxidant support for neuroblastoma cells,
J. Mater. Chem. B. 10(24) (2022) 4672-4683.
[36] R. Sriranjani, B. Srinithya, V. Vellingiri, P. Brindha, S.P. Anthony, A. Sivasubramanian, M.S. Muthuraman, Silver
nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities, J. Mol. Liq. 220 (2016) 926-930.
[37] B.K. Thakur, A. Kumar, D. Kumar, Green synthesis of titanium dioxide nanoparticles using Azadirachta indica leaf extract and evaluation of their antibacterial activity, S. Afr. J. Bot. 124 (2019) 223-227.
[38] N.Y. Stozhko, M.A. Bukharinova, E.I. Khamzina, A.V. Tarasov, M.B. Vidrevich, K.Z. Brainina, The Effect of the Antioxidant
Activity of Plant Extracts on the Properties of Gold Nanoparticles, Nanomaterials. 9(12) (2019) 1655.
[39] S. Ahmed, Annu, S.A. Chaudhry, S. Ikram, A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry, J. Photochem. Photobiol. B, Biol. 166 (2017) 272-284.
[40] P. Makvandi, Z. Baghbantaraghdari, W. Zhou, Y. Zhang, R. Manchanda, T. Agarwal, A. Wu, T.K. Maiti, R.S. Varma, B.R.
Smith, Gum polysaccharide/nanometal hybrid biocomposites in cancer diagnosis and therapy, Biotechnol. Adv. 48 (2021)
107711.
[41] N.I. Hulkoti, T.C. Taranath, Biosynthesis of nanoparticles using microbes—A review, Colloids Surf. B.121 (2014) 474-483.
[42] X. Chen, Z. Xue, J. Ji, D. Wang, G. Shi, L. Zhao, S. Feng, Hedysarum polysaccharides mediated green synthesis of gold
nanoparticles and study of its characteristic, analytical merit, catalytic activity, Mater. Res. Bull. 133 (2021) 111070.
[43] E.N. Zare, V.V.T. Padil, B. Mokhtari, A. Venkateshaiah, S. Wacławek, M.
Černík, F.R. Tay, R.S. Varma, P. Makvandi,
Advances in biogenically synthesized shaped metal- and carbon-based nanoarchitectures and their medicinal applications, Adv. Colloid Interface Sci. 283 (2020) 102236.
[44] J. Virkutyte, R.S. Varma, Green Synthesis of Nanomaterials: Environmental Aspects, Sustainable Nanotechnology and the Environment: Advances and Achievements, ACS Symp. Ser. Am. Chem. Soc. (2013)11-39.
[45] P. Makvandi, G.W. Ali, F. Della Sala, W.I. Abdel-Fattah, A. Borzacchiello, Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing, Carbohydr. Polym. 223 (2019) 115023.
[46] P. Makvandi, G.W. Ali, F. Della Sala, W.I. Abdel-Fattah, A. Borzacchiello, Hyaluronic acid/corn silk extract based injectable nanocomposite: A biomimetic antibacterial scaffold for bone tissue regeneration, Mater.Sci.Eng.C. 107 (2020) 110195.
[47] N. Nakatani, Phenolic antioxidants from herbs and spices, BioFactors. 13(1-4) (2000) 141-146.
[48] S.-S. Norma Francenia, S.-C. Raúl, V.-C. Claudia, H.-C. Beatriz, Antioxidant Compounds and Their Antioxidant Mechanism, in: S. Emad (Ed.), Antioxidants, IntechOpen. (2019) 1-28.
[49] P.-G. Pietta, Flavonoids as Antioxidants, J.Nat.Prod. 63(7) (2000) 1035-1042.
[50] M.J. del Baño, J. Lorente, J. Castillo, O. Benavente-García, J.A. del Río, A. Ortuño, K.-W. Quirin, D. Gerard, Phenolic
Diterpenes, Flavones, and Rosmarinic Acid Distribution during the Development of Leaves, Flowers, Stems, and Roots of
Rosmarinus officinalis. Antioxidant Activity, J. Agric. Food Chem. 51(15) (2003) 4247-4253.
[51] Y. Zhu, Z. Ma, L. Kong, Y. He, H.F. Chan, H. Li, Modulation of macrophages by bioactive glass/sodium alginate hydrogel is crucial in skin regeneration enhancement, Biomaterials. 256 (2020) 120216.
[52] T.G. Sahana, P.D. Rekha, Biopolymers: Applications in wound healing and skin tissue engineering, Mol. Biol. Rep. 45(6)
(2018) 2857-2867.
[53] Q. Zhong, B. Wei, S. Wang, S. Ke, J. Chen, H. Zhang, H. Wang, The Antioxidant Activity of Polysaccharides Derived from Marine Organisms: An Overview, Mar.Drugs.17(12) (2019) 674.
[54] Y. Endo, T. Aota, T. Tsukui, Antioxidant Activity of Alginic Acid in Minced Pork Meat, Food Sci.Technol.Res. 21(6) (2015) 875-878.
[55] F.G. Torres, S. Commeaux, O.P. Troncoso, Starch-based biomaterials for wound-dressing applications, Starch - Stärke. 65(7-8) (2013) 543-551.
[56] T. Spychaj, K. Wilpiszewska, M. Zdanowicz, Medium and high substituted carboxymethyl starch: Synthesis, characterization and application, Starch - Stärke. 65(1-2) (2013) 22-33.
[57] Z. Abdollahi, E.N. Zare, F. Salimi, I. Goudarzi, F.R. Tay, P. Makvandi, Bioactive Carboxymethyl Starch-Based Hydrogels
Decorated with CuO Nanoparticles: Antioxidant and Antimicrobial Properties and Accelerated Wound Healing In Vivo, Int. J. Mol. Sci. 22(5) (2021) 2531.
[58] V. Sindhi, V. Gupta, K. Sharma, S. Bhatnagar, R. Kumari, N. Dhaka, Potential applications of antioxidants–A review,
J.Pharm.Res. 7(9) (2013) 828-835.
[59] M. Wojcik, I. Burzynska-Pedziwiatr, A.L. Wozniak, A Review of Natural and Synthetic Antioxidants Important for Health
and Longevity, Curr. Med. Chem.17(28) (2010) 3262-3288.
[60] A. Muñoz-Acevedo, L.Y. Vargas Méndez, E.E. Stashenko, V.V. Kouznetsov, Improved Trolox® Equivalent Antioxidant
Capacity Assay for Efficient and Fast Search of New Antioxidant Agents, Anal.Chem.Lett.1(1) (2011) 86-102.
[61] B. Bideau, J. Bras, N. Adoui, E. Loranger, C. Daneault, Polypyrrole/nanocellulose composite for food preservation: Barrier and antioxidant characterization, Food Packag. Shelf Life.12 (2017) 1-8.
[62] A. Dhawan, V. Kumar, V.S. Parmar, A.L. Cholli, Properties, Applications, Novel polymeric antioxidants for materials.
Antioxidant Polymers (2012) 385-425.
[63] A. Hodgson, K. Gilmore, C. Small, G.G. Wallace, I.L Mackenzie, T. Aoki, N. Ogata, Reactive supramolecular assemblies of mucopolysaccharide, polypyrrole and protein as controllable biocomposites for a new generation of ‘intelligent biomaterials’. Supramol. Sci. 1(2) (1994) 77-83.
[64] C.R.J.A.o.c.r. Martin, Template synthesis of electronically conductive polymer nanostructures Acc. Chem. Res. 28(2) (1995) 61-68.
[65] A. Deronzier, J.C. Moutet, Functionalized polypyrroles. New molecular materials for electrocatalysis and related applications, Acc. Chem. Res.22(7) (1989) 249-255.
[66] G. Jin, K. Li, The electrically conductive scaffold as the skeleton of stem cell niche in regenerative medicine, Mater.Sci.Eng.C. 45 (2014) 671-681.
[67] T. Nezakati, A. Seifalian, A. Tan, A.M. Seifalian, Conductive Polymers: Opportunities and Challenges in Biomedical
Applications, Chem. Rev. 118(14) (2018) 6766-6843.
[68] M. Shahadat, S.Z. Ahammad, S.A. Wazed, S. Ismail, Synthesis of Polyaniline-Based Nanocomposite Materials and Their
Biomedical Applications, Electrically Conductive Polymer and Polymer Composites. (2018), 199-218.
[69] V. Hasantabar, M.M. Lakouraj, E.N. Zare, M. Mohseni, Synthesis, Characterization, and Biological Properties of Novel
Bioactive Poly(xanthoneamide-triazole-ethersulfone) and Its Multifunctional Nanocomposite with Polyaniline,
Adv.Polym.Technol. 36(3) (2017) 309-319.
[70] E.N. Zare, P. Makvandi, Antimicrobial metal-based nanomaterials and their industrial and biomedical applications, Engineered Antimicrobial Surfaces.(2020) 123-134.
[71] M. Gizdavic-Nikolaidis, J. Travas-Sejdic, G.A. Bowmaker, R.P. Cooney, C. Thompson, P.A. Kilmartin, The antioxidant
activity of conducting polymers in biomedical applications, Curr.Appl.Phys. 4(2) (2004) 347-350.
[72] A. Saikia, N. Karak, Polyaniline nanofiber/carbon dot nanohybrid as an efficient fluorimetric sensor for As (III) in water and effective antioxidant, Mater. Today Commun. 14 (2018) 82-89.
[73] M. Gizdavic-Nikolaidis, J. Travas-Sejdic, G.A. Bowmaker, R.P. Cooney, P.A. Kilmartin, Conducting polymers as free radical scavengers, Synth. Met. 140(2) (2004) 225-232.
[74] P. Moutsatsou, K. Coopman, S. Georgiadou, Biocompatibility Assessment of Conducting PANI/Chitosan Nanofibers for Wound Healing Applications, Polymers, 9(12) (2017) 687.
[75] J. He, Y. Liang, M. Shi, B. Guo, Anti-oxidant electroactive and antibacterial nanofibrous wound dressings based on poly(
ε- caprolactone)/quaternized chitosan-graft-polyaniline for full-thickness skin wound healing, Chem. Eng. J. 385 (2020) 123464.
[76] M. Zhang, B. Guo, Electroactive 3D Scaffolds Based on Silk Fibroin and Water-Borne Polyaniline for Skeletal Muscle Tissue Engineering, Macromol. Biosci. 17(9) (2017) 1700147.
[77] B.M. Hryniewicz, R.V. Lima, F. Wolfart, M. Vidotti, Influence of the pH on the electrochemical synthesis of polypyrrole
nanotubes and the supercapacitive performance evaluation, Electrochim. Acta. 293 (2019) 447-457.
[78] E.N. Zare, T. Agarwal, A. Zarepour, F. Pinelli, A. Zarrabi, F. Rossi, M. Ashrafizadeh, A. Maleki, M.-A. Shahbazi, T.K. Maiti,
R.S. Varma, F.R. Tay, M.R. Hamblin, V. Mattoli, P. Makvandi, Electroconductive multi-functional polypyrrole composites for
biomedical applications, Appl. Mater. Today 24 (2021) 101117.
[79] Y. Liang, J.C.-H. Goh, Polypyrrole-Incorporated Conducting Constructs for Tissue Engineering Applications: A Review,
Bioelectricity. 2(2) (2020) 101-119.
[80] Y. Park, J. Jung, M. Chang, Research Progress on Conducting Polymer-Based Biomedical Applications, Appl. Sci. 9(6) (2019) 1070.
[81] J. Upadhyay, A. Kumar, B. Gogoi, A.K. Buragohain, Biocompatibility and antioxidant activity of polypyrrole nanotubes,
Synth. Met. 189 (2014) 119-125.
[82] P. Poprac, K. Jomova, M. Simunkova, V. Kollar, C.J. Rhodes, M. Valko, Targeting free radicals in oxidative stress-related
human diseases Trends Pharmacol. Sci. 38(7) (2017) 592-607.
[83] E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, G. Perale, Progress in Conductive Polyaniline-Based
Nanocomposites for Biomedical Applications: A Review, J. Med. Chem. 63(1) (2020) 1-22.
[84] E.N. Zare, M.M. Lakouraj, M. Mohseni, A. Motahari, Multilayered electromagnetic bionanocomposite based on alginic acid: Characterization and biological activities, Carbohydr. Polym. 130 (2015) 372-380.
[85] Q. Gao, M. Lei, K. Zhou, X. Liu, S. Wang, H. Li, Preparation of a microfibrillated cellulose/chitosan/polypyrrole film for
Active Food Packaging, Prog. Org. Coat. 149 (2020) 105907.
[86] M. Mansour Lakourj, R.-S. Norouzian, M. Esfandyar, S. Ghasemi mir, Conducting nanocomposites of polypyrrole-copolyindole doped with carboxylated CNT: Synthesis approach and anticorrosion/antibacterial/antioxidation property, Mater. Sci. Eng. B.261 (2020) 114673.
[87] A. Somogyi, K. Rosta, P. Pusztai, Z. Tulassay, G. Nagy, Antioxidant measurements, Physiol. Meas. 28(4) (2007) R41.
[88] G. Cao, R.L. Prior, Comparison of different analytical methods for assessing total antioxidant capacity of human serum, Clin. Chem. 44(6 Pt 1) (1998) 1309-15.
[89] M. Ozgen, R.N. Reese, A.Z. Tulio, J.C. Scheerens, A.R. Miller, Modified 2,2-Azino-bis-3-ethylbenzothiazoline-6-sulfonic
Acid (ABTS) Method to Measure Antioxidant Capacity of Selected Small Fruits and Comparison to Ferric Reducing
Antioxidant Power
(FRAP)and2,2‘-Diphenyl-1-picrylhydrazyl(DPPH)Methods, J. Agric. Food Chem. 54(4) (2006) 1151-
1157.
[90] N.J. Miller, C. Rice-Evans, M.J. Davies, V. Gopinathan, A. Milner, A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates, Clin.Sci. (London, England: 1979) 84(4) (1993) 407- 12. [91] D.D. Wayner, G.W. Burton, K.U. Ingold, S. Locke, Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins, FEBS lett. 187(1) (1985) 33-7.
[92] G.W. Winston, F. Regoli, A.J. Dugas, J.H. Fong, K.A. Blanchard, A Rapid Gas Chromatographic Assay for Determining
Oxyradical Scavenging Capacity of Antioxidants and Biological Fluids, Free Radic. Biol. Med. 24(3) (1998) 480-493.
[93] V. Hasantabar, M.M. Lakouraj, E.N.Zare, M. Mohseni, Innovative magnetic tri-layered nanocomposites based on
polyxanthone triazole, polypyrrole and iron oxide: synthesis, characterization and investigation of the biological activities, RSC Adv..5(86) (2015) 70186-70196.
[94] E.N. Zare, M.M. Lakouraj, P.N. Moghadam, R. Azimi, Novel polyfuran/functionalized multiwalled carbon nanotubes
composites with improved conductivity: Chemical synthesis, characterization, and antioxidant activity, Polym.Compos. 34(5) (2013) 732-739.
[95] I. Khalil, W.A. Yehye, A.E. Etxeberria, A.A. Alhadi, S.M. Dezfooli, N.B. Julkapli, W.J. Basirun, A. Seyfoddin,
Nanoantioxidants: Recent Trends in Antioxidant Delivery Applications, Antioxidants. 9(1) (2019) 24.