[1] D. Ghosh, D. Khastgir, Degradation and Stability of Polymeric High-Voltage Insulators and Prediction of Their Service Life through Environmental and Accelerated Aging Processes, ACS Omega 3 (2018) 11317-11330.
[2] M.Z. Saleem, M. Akbar, Review of the Performance of High-Voltage Composite Insulators, Polymers 14 (2022) 431.
[3] T. Nezakati, A. Seifalian, A. Tan, A.M. Seifalian, Conductive Polymers: Opportunities and Challenges in Biomedical
Applications, Chem. Rev. 118 (2018) 6766-6843.
[4] E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, G. Perale, Progress in Conductive Polyaniline-Based
Nanocomposites for Biomedical Applications: A Review, J. Med. Chem. 63 (2020) 1-22.
[5] M. Shanmugam, A. Augustin, S. Mohan, B. Honnappa, C. Chuaicham, S. Rajendran, T.K.A. Hoang, K. Sasaki, K. Sekar,
Conducting polymeric nanocomposites: A review in solar fuel applications, Fuel 325 (2022) 124899.
[6] B. Guo, P.X. Ma, Conducting Polymers for Tissue Engineering, Biomacromolecules 19 (2018) 1764-1782.
[7] M. Baghayeri, E.N. Zare, M.M. Lakouraj, Monitoring of hydrogen peroxide using a glassy carbon electrode modified with hemoglobin and a polypyrrole-based nanocomposite, Microchim. Acta 182 (2015) 771-779.
[8] M. Baghayeri, E. Nazarzadeh Zare, M. Mansour Lakouraj, A simple hydrogen peroxide biosensor based on a novel electromagnetic poly(p-phenylenediamine)@Fe3O4 nanocomposite, Biosens. Bioelectron. 55 (2014) 259-265.
[9] M. Ghovvati, M. Kharaziha, R. Ardehali, N. Annabi, Recent Advances in Designing Electroconductive Biomaterials for
Cardiac Tissue Engineering, Adv. Healthc. Mater. 11 (2022) 2200055.
[10] S. Sarkar, N. Levi-Polyachenko, Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery, Adv. Drug Deliv. Rev. 163-164 (2020) 40-64.
[11] A.N. Gheymasi, Y. Rajabi, E.N. Zare, Nonlinear optical properties of poly(aniline-co-pyrrole)@ZnO-based nanofluid, Opt. Mater. 102 (2020) 109835.
[12] E.N. Zare, M.M. Lakouraj, Biodegradable polyaniline/dextrin conductive nanocomposites: synthesis, characterization, and study of antioxidant activity and sorption of heavy metal ions, Iran. Polym. J. 23 (2014) 257-266.
[13] P. Najafi Moghadam, E. Nazarzadeh Zareh, Synthesis of conductive nanocomposites based on polyaniline/poly(styrene-altmaleic anhydride)/polystyrene, e-Polymers 10 (2010).
[14] M. Ghomi, E.N. Zare, R.S. Varma, Preparation of Conducting Polymers/Composites, Conductive Polymers in Analytical
Chemistry, ACS (2022) 67-90.
[15] M. Gizdavic-Nikolaidis, J. Travas-Sejdic, G.A. Bowmaker, R.P. Cooney, C. Thompson, P.A. Kilmartin, The antioxidant
activity of conducting polymers in biomedical applications, Curr. Appl. Phys. 4 (2004) 347-350.
[16] P. Jayamurugan, V. Ponnuswamy, S. Ashokan, Y.V.S. Rao, T. Mahalingam, PPy Doped with DBSA and Combined with PSS to Improve Processability and Control the Morphology, Int. Polym. Process. 30 (2015) 422-427.
[17] H. Yu, Y. He, H. Li, Z. Li, B. Ren, G. Chen, X. Hu, T. Tang, Y. Cheng, J.Z. Ou, Core-shell PPy@TiO2 enable GO membranes
with controllable and stable dye desalination properties, Desalination 526 (2022) 115523.
[18] J. Nightingale, J. Wade, D. Moia, J. Nelson, J.-S. Kim, Impact of Molecular Order on Polaron Formation in Conjugated
Polymers, J. Phys. Chem. C 122 (2018) 29129-29140.
[19] M. Gosh, A. Barman, A.K. Meikap, S.K. De, S. Chatterjee, Hopping transport in HCl doped conducting polyaniline, Phys. Lett. A 260 (1999) 138-148.
[20] A. Yussuf, M. Al-Saleh, S. Al-Enezi, G. Abraham, Synthesis and Characterization of Conductive Polypyrrole: The Influence of the Oxidants and Monomer on the Electrical, Thermal, and Morphological Properties, Int. J. Polym. Sci. 2018 (2018) 4191747.
[21] H. Masuda, D.K. Asano, Preparation and properties of polypyrrole, Synth. Met. 135-136 (2003) 43-44.
[22] E. Nazarzadeh Zare, M. Mansour Lakouraj, M. Mohseni, Biodegradable polypyrrole/dextrin conductive nanocomposite: Synthesis, characterization, antioxidant and antibacterial activity, Synth. Met. 187 (2014) 9-16.
[23] A. Fahlgren, C. Bratengeier, A. Gelmi, C.M. Semeins, J. Klein-Nulend, E.W. Jager, A.D. Bakker, Biocompatibility of
Polypyrrole with Human Primary Osteoblasts and the Effect of Dopants, PLoS One 10 (2015) e0134023.
[24] E.N. Zare, T. Agarwal, A. Zarepour, F. Pinelli, A. Zarrabi, F. Rossi, M. Ashrafizadeh, A. Maleki, M.-A. Shahbazi, T.K. Maiti,
R.S. Varma, F.R. Tay, M.R. Hamblin, V. Mattoli, P. Makvandi, Electroconductive multi-functional polypyrrole composites
for biomedical applications, Appl. Mater. Today 24 (2021) 101117.
[25] A.L. Gomes, M.B. Pinto Zakia, J.G. Filho, E. Armelin, C. Alemán, J. Sinezio de Carvalho Campos, Preparation and
characterization of semiconducting polymeric blends. Photochemical synthesis of poly(3-alkylthiophenes) using host
microporous matrices of poly(vinylidene fluoride), Polym. Chem. 3 (2012) 1334-1343.
[26] M.T. Ramesan, K. Suhailath, 13 - Role of nanoparticles on polymer composites, in: R.K. Mishra, S. Thomas, N. Kalarikkal(Eds.), Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends, Woodhead Publishing (2017) 301-326.
[27] R.P. Pant, S.K. Dhawan, D. Suri, M. Arora, S.K. Gupta, M. Koneracká, P. Kopčanský, M. Timko, Synthesis and
characterization of ferrofluid-conducting polymer composite, Indian J. Eng. Mater. Sci. 11 (2004) 267-270.
[28] J. Heinze, Electrochemistry of conducting polymers, Synth. Met. 43 (1991) 2805-2823.
[29] S. Tokito, T. Tsutsui, S. Saito, Electrical Conductivity and Optical Properties of Poly(p-phenylene sulflde) Doped with Some Organic Acceptors, Polym. J. 17 (1985) 959-968.
[30] N. K, C.S. Rout, Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications, RSC Adv. 11 (2021) 5659-5697.
[31] H.W. Hill Jr., D.G. Brady, Properties, environmental stability, and molding characteristics of polyphenylene sulfide, Polym. Eng. Sci. 16 (1976) 831-835.
[32] A.S. Rahate, K.R. Nemade, S.A. Waghuley, Polyphenylene sulfide (PPS): state of the art and applications, Rev. Chem. Eng. 29 (2013) 471-489.
[33] D. Yaron, Nonlinear optical response of conjugated polymers: Essential excitations and scattering, Phys. Rev. B 54 (1996) 4609-4620.
[34] S.H. Cho, K.T. Song, J.Y. Lee, Recent advances in polypyrrole (2007) 1-8.
[35] A.A. Baleg, M. Masikini, S.V. John, A.R. Williams, N. Jahed, P. Baker, E. Iwuoha, Conducting Polymers and Composites,
in: M.A. Jafar Mazumder, H. Sheardown, A. Al-Ahmed (Eds.), Functional Polymers, Springer, Cham. (2018) 1-54.
[36] T.-H. Le, Y. Kim, H. Yoon, Electrical and Electrochemical Properties of Conducting Polymers, Polymers 9 (2017) 150.
[37] S.B. Mdluli, M.E. Ramoroka, S.T. Yussuf, K.D. Modibane, V.S. John-Denk, E.I. Iwuoha, π-Conjugated Polymers and
Their Application in Organic and Hybrid Organic-Silicon Solar Cells, Polymers 14 (2022) 716.
[38] F. Borrmann, T. Tsuda, O. Guskova, N. Kiriy, C. Hoffmann, D. Neusser, S. Ludwigs, U. Lappan, F. Simon, M. Geisler, B.
Debnath, Y. Krupskaya, M. Al-Hussein, A. Kiriy, Charge-Compensated N-Doped π-Conjugated Polymers: Toward both
Thermodynamic Stability of N-Doped States in Water and High Electron Conductivity, Adv. Sci. 9 (2022) 2203530.
[39] J. Stejskal, M. Trchová, Conducting polypyrrole nanotubes: a review, Chem. Pap. 72 (2018) 1563-1595.
[40] G. Kaur, R. Adhikari, P. Cass, M. Bown, P. Gunatillake, Electrically conductive polymers and composites for biomedical
applications, RSC Adv. 5 (2015) 37553-37567.
[41] H. He, L. Zhang, X. Guan, H. Cheng, X. Liu, S. Yu, J. Wei, J. Ouyang, Biocompatible Conductive Polymers with High
Conductivity and High Stretchability, ACS. Appl. Mater. Interfaces 11 (2019) 26185-26193.
[42] T. Pal, S. Banerjee, P.K. Manna, K.K. Kar, Characteristics of Conducting Polymers, in: K.K. Kar (Ed.), Handbook of
Nanocomposite Supercapacitor Materials I: Characteristics, Springer, Cham. (2020) 247-268.
[43] G. Magela e Silva, Electric-field effects on the competition between polarons and bipolarons in conjugated polymers, Phys. Rev. B 61 (2000) 10777-10781.
[44] A.M.R. Ramírez, M.A. Gacitúa, E. Ortega, F.R. Díaz, M.A. del Valle, Electrochemical in situ synthesis of polypyrrole
nanowires, Electrochem. Commun. 102 (2019) 94-98.
[45] R. Ravichandran, S. Sundarrajan, J.R. Venugopal, S. Mukherjee, S. Ramakrishna, Applications of conducting polymers and their issues in biomedical engineering, J. R. Soc. Interface 7(suppl_5) (2010) 559-579.
[46] B.D. Malhotra, A. Chaubey, S.P. Singh, Prospects of conducting polymers in biosensors, Anal. Chim. Acta 578 (2006) 59-74.
[47] K.-H. Yang, Y.-C. Liu, C.-C. Yu, Temperature effect of electrochemically roughened gold substrates on polymerization
electrocatalysis of polypyrrole, Anal. Chim. Acta 631 (2009) 40-46.
[48] Y. Park, J. Jung, M. Chang, Research Progress on Conducting Polymer-Based Biomedical Applications, App. Sci. 9 (2019) 1070.
[49] A. Pietrangelo, B.C. Sih, B.N. Boden, Z. Wang, Q. Li, K.C. Chou, M.J. MacLachlan, M.O. Wolf, Nonlinear Optical Properties of Schiff-Base-Containing Conductive Polymer Films Electro-deposited in Microgravity, Adv. Mater. 20 (2008) 2280-2284.
[50] D. Runsewe, T. Betancourt, J.A. Irvin, Biomedical Application of Electroactive Polymers in Electrochemical Sensors: A
Review, Materials 12 (2019) 2629.
[51] Y. Yan, Y. Jiang, E.L.L. Ng, Y. Zhang, C. Owh, F. Wang, Q. Song, T. Feng, B. Zhang, P. Li, X.J. Loh, S.Y. Chan, B.Q.Y.
Chan, Progress and opportunities in additive manufacturing of electrically conductive polymer composites, Mater. Today
Adv. 17 (2023) 100333.
[52] Y. Arteshi, A. Aghanejad, S. Davaran, Y. Omidi, Biocompatible and electroconductive polyaniline-based biomaterials for electrical stimulation, Eur. Polym. J. 108 (2018) 150-170.
[53] E. Łyszczarz, W. Brniak, J. Szafraniec-Szczęsny, T.M. Majka, D. Majda, M. Zych, K. Pielichowski, R. Jachowicz, The Impact of the Preparation Method on the Properties of Orodispersible Films with Aripiprazole: Electrospinning vs. Casting and 3D Printing Methods, Pharmaceutics 13 (2021) 1122.
[54] M. Bhandari, D.P. Kaur, S. Raj, T. Yadav, M.A.S. Abourehab, M.S. Alam, Electrically Conducting Smart Biodegradable
Polymers and Their Applications, in: G.A.M. Ali, A.S.H. Makhlouf (Eds.), Handbook of Biodegradable Materials, Springer,
Cham. (2023) 391-413.
[55] S. Lee, B. Ozlu, T. Eom, D.C. Martin, B.S. Shim, Electrically conducting polymers for bio-interfacing electronics: From neural and cardiac interfaces to bone and artificial tissue biomaterials, Biosens. Bioelectron. 170 (2020) 112620.
[56] A. Markov, R. Wördenweber, L. Ichkitidze, A. Gerasimenko, U. Kurilova, I. Suetina, M. Mezentseva, A. Offenhäusser, D.
Telyshev, Biocompatible SWCNT Conductive Composites for Biomedical Applications, Nanomaterials 10 (2020) 2492.
[57] S.C. Wang, K.S. Chang, C.J. Yuan, Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment, Electrochim. Acta 54 (2009) 4937-4943.
[58] R. Ghobeira, C. Philips, H. Declercq, P. Cools, N. De Geyter, R. Cornelissen, R. Morent, Effects of different sterilization
methods on the physicochemical and bioresponsive properties of plasma-treated polycaprolactone films, Biomed.Mater. 12 (2017) 015017.
[59] A.C. da Silva, S.I. Córdoba de Torresi, Advances in Conducting, Biodegradable and Biocompatible Copolymers for
Biomedical Applications, Front. Mater. 6 (2019).
[60] S. Cheruthazhekatt, M. Černák, P. Slavíček, J. Havel, Gas plasmas and plasma modified materials in medicine, J. Appl.
Biomed. 8 (2010) 55-66.
[61] M.N. Barshutina, V.S. Volkov, A.V. Arsenin, D.I. Yakubovsky, A.V. Melezhik, A.N. Blokhin, A.G. Tkachev, A.V. Lopachev,
V.A. Kondrashov, Biocompatible, Electroconductive, and Highly Stretchable Hybrid Silicone Composites Based on FewLayer Graphene and CNTs, Nanomaterials (Basel) 11 (2021).
[62] S. Lyu, D. Untereker, Degradability of Polymers for Implantable Biomedical Devices, Int. J. Mol. Sci. 10 (2009) 4033-4065.
[63] N.J. Lores, X. Hung, M.H. Talou, G.A. Abraham, P.C. Caracciolo, Novel three-dimensional printing of poly(ester urethane) scaffolds for biomedical applications, Polym. Adv.Technol. 32 (2021) 3309-3321.
[64] M. Pajic, J. Zhihao, A. Connolly, R. Mangharam, A Framework for Validation of Implantable Medical Devices, Real-Time and Embedded Systems Lab (mLAB) (2010).
[65] A.B. Amar, A.B. Kouki, H. Cao, Power Approaches for Implantable Medical Devices, Sensors 15 (2015) 28889-28914.
[66] M.M.H. Shuvo, T. Titirsha, N. Amin, S.K. Islam, Energy Harvesting in Implantable and Wearable Medical Devices for
Enduring Precision Healthcare, Energies 15 (2022) 7495.
[67] H. Esmaeili, A. Patino-Guerrero, M. Hasany, M.O. Ansari, A. Memic, A. Dolatshahi-Pirouz, M. Nikkhah, Electroconductive biomaterials for cardiac tissue engineering, Acta Biomater. 139 (2022) 118-140.
[68] B. Podsiadły, P. Walter, M. Kamiński, A. Skalski, M. Słoma, Electrically Conductive Nanocomposite Fibers for Flexible and Structural Electronics, Appl. Sci. 12 (2022) 941.
[69] S.M.A. Mokhtar, E. Alvarez de Eulate, M. Yamada, T.W. Prow, D.R. Evans, Conducting polymers in wearable devices, Med. Devices Sens. 4 (2021) e10160.
[70] S. Peng, Y. Yu, S. Wu, C.-H. Wang, Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications, ACS Appl. Mater. Interfaces 13 (2021) 43831-43854.
[71] C. Park, M.S. Kim, H.H. Kim, S.-H. Sunwoo, D.J. Jung, M.K. Choi, D.-H. Kim, Stretchable conductive nanocomposites and their applications in wearable devices, Appl. Phys. Rev. 9 (2022).
[72] C.A.R. Chapman, E.A. Cuttaz, J.A. Goding, R.A. Green, Actively controlled local drug delivery using conductive polymerbased devices, Appl. Phys. Lett. 116 (2020).
[73] S. Adepu, S. Ramakrishna, Controlled Drug Delivery Systems: Current Status and Future Directions, Molecules 26 (2021) 5905.
[74] M.D. Ashton, P.A. Cooper, S. Municoy, M.F. Desimone, D. Cheneler, S.D. Shnyder, J.G. Hardy, Controlled Bioactive
Delivery Using Degradable Electroactive Polymers, Biomacromolecules 23 (2022) 3031-3040.
[75] M.-L. Laracuente, M.H. Yu, K.J. McHugh, Zero-order drug delivery: State of the art and future prospects, J. Control. Release 327 (2020) 834-856.
[76] S. Gungordu Er, A. Kelly, S.B.W. Jayasuriya, M. Edirisinghe, Nanofiber Based on Electrically Conductive Materials for
Biosensor Applications, Biomed. Mater. Devices (2022) https://doi.org/10.1007/s44174-022-00050-z.