Advances in Electroconductive Polymers for Biomedical Sector: Structure and Properties

Document Type : Review Article

Authors

Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA

Abstract

This review examines the synthesis, properties, and broad-spectrum applications of electroconductive polymers (ECPs), including polyaniline, polypyrrole, polythiophene, polyphenylene, and polyacetylene. These polymers exhibit high electrical conductivity, versatility in fabrication, and compatibility with various functionalization techniques, making them particularly attractive for diverse applications. While ECPs have traditionally been used in sensors, actuators, and energy storage systems, their utility extends much further, most notably to the realm of biomedical applications. The review meticulously explores the synthesis techniques of ECPs, shedding light on both chemical and electrochemical methods, and the pivotal role that dopants and polymerization techniques play in shaping the properties of the resultant polymers. Apart from discussing the conventional applications of ECPs, the review devotes substantial attention to their groundbreaking biomedical applications, like tissue engineering, medical implants, and the creation of interfaces with biological tissues. It also underscores the future trajectory of ECP research, emphasizing the development of innovative materials and fabrication methodologies for more advanced applications. With this holistic analysis of the field, the review seeks to enhance readers'' understanding of the intrinsic properties, structural complexities, and fabrication nuances of ECPs, and inspire continued research and development in this fascinating and consequential domain of materials science.

Graphical Abstract

Advances in Electroconductive Polymers for Biomedical Sector: Structure and Properties

Keywords


 [1] D. Ghosh, D. Khastgir, Degradation and Stability of Polymeric High-Voltage Insulators and Prediction of Their Service Life through Environmental and Accelerated Aging Processes, ACS Omega 3 (2018) 11317-11330.
[2] M.Z. Saleem, M. Akbar, Review of the Performance of High-Voltage Composite Insulators, Polymers 14 (2022) 431.
[3] T. Nezakati, A. Seifalian, A. Tan, A.M. Seifalian, Conductive Polymers: Opportunities and Challenges in Biomedical
Applications, Chem. Rev. 118 (2018) 6766-6843.
[4] E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, G. Perale, Progress in Conductive Polyaniline-Based
Nanocomposites for Biomedical Applications: A Review, J. Med. Chem. 63 (2020) 1-22.
[5] M. Shanmugam, A. Augustin, S. Mohan, B. Honnappa, C. Chuaicham, S. Rajendran, T.K.A. Hoang, K. Sasaki, K. Sekar,
Conducting polymeric nanocomposites: A review in solar fuel applications, Fuel 325 (2022) 124899.
[6] B. Guo, P.X. Ma, Conducting Polymers for Tissue Engineering, Biomacromolecules 19 (2018) 1764-1782.
[7] M. Baghayeri, E.N. Zare, M.M. Lakouraj, Monitoring of hydrogen peroxide using a glassy carbon electrode modified with hemoglobin and a polypyrrole-based nanocomposite, Microchim. Acta 182 (2015) 771-779.
[8] M. Baghayeri, E. Nazarzadeh Zare, M. Mansour Lakouraj, A simple hydrogen peroxide biosensor based on a novel electromagnetic poly(p-phenylenediamine)@Fe3O4 nanocomposite, Biosens. Bioelectron. 55 (2014) 259-265.
[9] M. Ghovvati, M. Kharaziha, R. Ardehali, N. Annabi, Recent Advances in Designing Electroconductive Biomaterials for
Cardiac Tissue Engineering, Adv. Healthc. Mater. 11 (2022) 2200055.
[10] S. Sarkar, N. Levi-Polyachenko, Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery, Adv. Drug Deliv. Rev. 163-164 (2020) 40-64.
[11] A.N. Gheymasi, Y. Rajabi, E.N. Zare, Nonlinear optical properties of poly(aniline-co-pyrrole)@ZnO-based nanofluid, Opt. Mater. 102 (2020) 109835.
[12] E.N. Zare, M.M. Lakouraj, Biodegradable polyaniline/dextrin conductive nanocomposites: synthesis, characterization, and study of antioxidant activity and sorption of heavy metal ions, Iran. Polym. J. 23 (2014) 257-266.
[13] P. Najafi Moghadam, E. Nazarzadeh Zareh, Synthesis of conductive nanocomposites based on polyaniline/poly(styrene-altmaleic anhydride)/polystyrene, e-Polymers 10 (2010).
[14] M. Ghomi, E.N. Zare, R.S. Varma, Preparation of Conducting Polymers/Composites, Conductive Polymers in Analytical
Chemistry, ACS (2022) 67-90.
[15] M. Gizdavic-Nikolaidis, J. Travas-Sejdic, G.A. Bowmaker, R.P. Cooney, C. Thompson, P.A. Kilmartin, The antioxidant
activity of conducting polymers in biomedical applications, Curr. Appl. Phys. 4 (2004) 347-350.
[16] P. Jayamurugan, V. Ponnuswamy, S. Ashokan, Y.V.S. Rao, T. Mahalingam, PPy Doped with DBSA and Combined with PSS to Improve Processability and Control the Morphology, Int. Polym. Process. 30 (2015) 422-427.
[17] H. Yu, Y. He, H. Li, Z. Li, B. Ren, G. Chen, X. Hu, T. Tang, Y. Cheng, J.Z. Ou, Core-shell PPy@TiO2 enable GO membranes
with controllable and stable dye desalination properties, Desalination 526 (2022) 115523.
[18] J. Nightingale, J. Wade, D. Moia, J. Nelson, J.-S. Kim, Impact of Molecular Order on Polaron Formation in Conjugated
Polymers, J. Phys. Chem. C 122 (2018) 29129-29140.
[19] M. Gosh, A. Barman, A.K. Meikap, S.K. De, S. Chatterjee, Hopping transport in HCl doped conducting polyaniline, Phys. Lett. A 260 (1999) 138-148.
[20] A. Yussuf, M. Al-Saleh, S. Al-Enezi, G. Abraham, Synthesis and Characterization of Conductive Polypyrrole: The Influence of the Oxidants and Monomer on the Electrical, Thermal, and Morphological Properties, Int. J. Polym. Sci. 2018 (2018) 4191747.
[21] H. Masuda, D.K. Asano, Preparation and properties of polypyrrole, Synth. Met. 135-136 (2003) 43-44.
[22] E. Nazarzadeh Zare, M. Mansour Lakouraj, M. Mohseni, Biodegradable polypyrrole/dextrin conductive nanocomposite: Synthesis, characterization, antioxidant and antibacterial activity, Synth. Met. 187 (2014) 9-16.
[23] A. Fahlgren, C. Bratengeier, A. Gelmi, C.M. Semeins, J. Klein-Nulend, E.W. Jager, A.D. Bakker, Biocompatibility of
Polypyrrole with Human Primary Osteoblasts and the Effect of Dopants, PLoS One 10 (2015) e0134023.
[24] E.N. Zare, T. Agarwal, A. Zarepour, F. Pinelli, A. Zarrabi, F. Rossi, M. Ashrafizadeh, A. Maleki, M.-A. Shahbazi, T.K. Maiti,
R.S. Varma, F.R. Tay, M.R. Hamblin, V. Mattoli, P. Makvandi, Electroconductive multi-functional polypyrrole composites
for biomedical applications, Appl. Mater. Today 24 (2021) 101117.
[25] A.L. Gomes, M.B. Pinto Zakia, J.G. Filho, E. Armelin, C. Alemán, J. Sinezio de Carvalho Campos, Preparation and
characterization of semiconducting polymeric blends. Photochemical synthesis of poly(3-alkylthiophenes) using host
microporous matrices of poly(vinylidene fluoride), Polym. Chem. 3 (2012) 1334-1343.
[26] M.T. Ramesan, K. Suhailath, 13 - Role of nanoparticles on polymer composites, in: R.K. Mishra, S. Thomas, N. Kalarikkal(Eds.), Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends, Woodhead Publishing (2017) 301-326.
[27] R.P. Pant, S.K. Dhawan, D. Suri, M. Arora, S.K. Gupta, M. Koneracká, P. Kop
čanský, M. Timko, Synthesis and
characterization of ferrofluid-conducting polymer composite, Indian J. Eng. Mater. Sci. 11 (2004) 267-270.
[28] J. Heinze, Electrochemistry of conducting polymers, Synth. Met. 43 (1991) 2805-2823.
[29] S. Tokito, T. Tsutsui, S. Saito, Electrical Conductivity and Optical Properties of Poly(p-phenylene sulflde) Doped with Some Organic Acceptors, Polym. J. 17 (1985) 959-968.
[30] N. K, C.S. Rout, Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications, RSC Adv. 11 (2021) 5659-5697.
[31] H.W. Hill Jr., D.G. Brady, Properties, environmental stability, and molding characteristics of polyphenylene sulfide, Polym. Eng. Sci. 16 (1976) 831-835.
[32] A.S. Rahate, K.R. Nemade, S.A. Waghuley, Polyphenylene sulfide (PPS): state of the art and applications, Rev. Chem. Eng. 29 (2013) 471-489.
[33] D. Yaron, Nonlinear optical response of conjugated polymers: Essential excitations and scattering, Phys. Rev. B 54 (1996) 4609-4620.
[34] S.H. Cho, K.T. Song, J.Y. Lee, Recent advances in polypyrrole (2007) 1-8.
[35] A.A. Baleg, M. Masikini, S.V. John, A.R. Williams, N. Jahed, P. Baker, E. Iwuoha, Conducting Polymers and Composites,
in: M.A. Jafar Mazumder, H. Sheardown, A. Al-Ahmed (Eds.), Functional Polymers, Springer, Cham. (2018) 1-54.
[36] T.-H. Le, Y. Kim, H. Yoon, Electrical and Electrochemical Properties of Conducting Polymers, Polymers 9 (2017) 150.
[37] S.B. Mdluli, M.E. Ramoroka, S.T. Yussuf, K.D. Modibane, V.S. John-Denk, E.I. Iwuoha, π-Conjugated Polymers and
Their Application in Organic and Hybrid Organic-Silicon Solar Cells, Polymers 14 (2022) 716.
[38] F. Borrmann, T. Tsuda, O. Guskova, N. Kiriy, C. Hoffmann, D. Neusser, S. Ludwigs, U. Lappan, F. Simon, M. Geisler, B.
Debnath, Y. Krupskaya, M. Al-Hussein, A. Kiriy, Charge-Compensated N-Doped
π-Conjugated Polymers: Toward both
Thermodynamic Stability of N-Doped States in Water and High Electron Conductivity, Adv. Sci. 9 (2022) 2203530.
[39] J. Stejskal, M. Trchová, Conducting polypyrrole nanotubes: a review, Chem. Pap. 72 (2018) 1563-1595.
[40] G. Kaur, R. Adhikari, P. Cass, M. Bown, P. Gunatillake, Electrically conductive polymers and composites for biomedical
applications, RSC Adv. 5 (2015) 37553-37567.
[41] H. He, L. Zhang, X. Guan, H. Cheng, X. Liu, S. Yu, J. Wei, J. Ouyang, Biocompatible Conductive Polymers with High
Conductivity and High Stretchability, ACS. Appl. Mater. Interfaces 11 (2019) 26185-26193.
[42] T. Pal, S. Banerjee, P.K. Manna, K.K. Kar, Characteristics of Conducting Polymers, in: K.K. Kar (Ed.), Handbook of
Nanocomposite Supercapacitor Materials I: Characteristics, Springer, Cham. (2020) 247-268.
[43] G. Magela e Silva, Electric-field effects on the competition between polarons and bipolarons in conjugated polymers, Phys. Rev. B 61 (2000) 10777-10781.
[44] A.M.R. Ramírez, M.A. Gacitúa, E. Ortega, F.R. Díaz, M.A. del Valle, Electrochemical in situ synthesis of polypyrrole
nanowires, Electrochem. Commun. 102 (2019) 94-98.
[45] R. Ravichandran, S. Sundarrajan, J.R. Venugopal, S. Mukherjee, S. Ramakrishna, Applications of conducting polymers and their issues in biomedical engineering, J. R. Soc. Interface 7(suppl_5) (2010) 559-579.
[46] B.D. Malhotra, A. Chaubey, S.P. Singh, Prospects of conducting polymers in biosensors, Anal. Chim. Acta 578 (2006) 59-74.
[47] K.-H. Yang, Y.-C. Liu, C.-C. Yu, Temperature effect of electrochemically roughened gold substrates on polymerization
electrocatalysis of polypyrrole, Anal. Chim. Acta 631 (2009) 40-46.
[48] Y. Park, J. Jung, M. Chang, Research Progress on Conducting Polymer-Based Biomedical Applications, App. Sci. 9 (2019) 1070.
[49] A. Pietrangelo, B.C. Sih, B.N. Boden, Z. Wang, Q. Li, K.C. Chou, M.J. MacLachlan, M.O. Wolf, Nonlinear Optical Properties of Schiff-Base-Containing Conductive Polymer Films Electro-deposited in Microgravity, Adv. Mater. 20 (2008) 2280-2284.
[50] D. Runsewe, T. Betancourt, J.A. Irvin, Biomedical Application of Electroactive Polymers in Electrochemical Sensors: A
Review, Materials 12 (2019) 2629.
[51] Y. Yan, Y. Jiang, E.L.L. Ng, Y. Zhang, C. Owh, F. Wang, Q. Song, T. Feng, B. Zhang, P. Li, X.J. Loh, S.Y. Chan, B.Q.Y.
Chan, Progress and opportunities in additive manufacturing of electrically conductive polymer composites, Mater. Today
Adv. 17 (2023) 100333.
[52] Y. Arteshi, A. Aghanejad, S. Davaran, Y. Omidi, Biocompatible and electroconductive polyaniline-based biomaterials for electrical stimulation, Eur. Polym. J. 108 (2018) 150-170.
[53] E. Łyszczarz, W. Brniak, J. Szafraniec-Szcz
ęsny, T.M. Majka, D. Majda, M. Zych, K. Pielichowski, R. Jachowicz, The Impact of the Preparation Method on the Properties of Orodispersible Films with Aripiprazole: Electrospinning vs. Casting and 3D Printing Methods, Pharmaceutics 13 (2021) 1122.
[54] M. Bhandari, D.P. Kaur, S. Raj, T. Yadav, M.A.S. Abourehab, M.S. Alam, Electrically Conducting Smart Biodegradable
Polymers and Their Applications, in: G.A.M. Ali, A.S.H. Makhlouf (Eds.), Handbook of Biodegradable Materials, Springer,
Cham. (2023) 391-413.
[55] S. Lee, B. Ozlu, T. Eom, D.C. Martin, B.S. Shim, Electrically conducting polymers for bio-interfacing electronics: From neural and cardiac interfaces to bone and artificial tissue biomaterials, Biosens. Bioelectron. 170 (2020) 112620.
[56] A. Markov, R. Wördenweber, L. Ichkitidze, A. Gerasimenko, U. Kurilova, I. Suetina, M. Mezentseva, A. Offenhäusser, D.
Telyshev, Biocompatible SWCNT Conductive Composites for Biomedical Applications, Nanomaterials 10 (2020) 2492.
[57] S.C. Wang, K.S. Chang, C.J. Yuan, Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment, Electrochim. Acta 54 (2009) 4937-4943.
[58] R. Ghobeira, C. Philips, H. Declercq, P. Cools, N. De Geyter, R. Cornelissen, R. Morent, Effects of different sterilization
methods on the physicochemical and bioresponsive properties of plasma-treated polycaprolactone films, Biomed.Mater. 12 (2017) 015017.
[59] A.C. da Silva, S.I. Córdoba de Torresi, Advances in Conducting, Biodegradable and Biocompatible Copolymers for
Biomedical Applications, Front. Mater. 6 (2019).
[60] S. Cheruthazhekatt, M.
Černák, P. Slavíček, J. Havel, Gas plasmas and plasma modified materials in medicine, J. Appl.
Biomed. 8 (2010) 55-66.
[61] M.N. Barshutina, V.S. Volkov, A.V. Arsenin, D.I. Yakubovsky, A.V. Melezhik, A.N. Blokhin, A.G. Tkachev, A.V. Lopachev,
V.A. Kondrashov, Biocompatible, Electroconductive, and Highly Stretchable Hybrid Silicone Composites Based on FewLayer Graphene and CNTs, Nanomaterials (Basel) 11 (2021).
[62] S. Lyu, D. Untereker, Degradability of Polymers for Implantable Biomedical Devices, Int. J. Mol. Sci. 10 (2009) 4033-4065.
[63] N.J. Lores, X. Hung, M.H. Talou, G.A. Abraham, P.C. Caracciolo, Novel three-dimensional printing of poly(ester urethane) scaffolds for biomedical applications, Polym. Adv.Technol. 32 (2021) 3309-3321.
[64] M. Pajic, J. Zhihao, A. Connolly, R. Mangharam, A Framework for Validation of Implantable Medical Devices, Real-Time and Embedded Systems Lab (mLAB) (2010).
[65] A.B. Amar, A.B. Kouki, H. Cao, Power Approaches for Implantable Medical Devices, Sensors 15 (2015) 28889-28914.
[66] M.M.H. Shuvo, T. Titirsha, N. Amin, S.K. Islam, Energy Harvesting in Implantable and Wearable Medical Devices for
Enduring Precision Healthcare, Energies 15 (2022) 7495.
[67] H. Esmaeili, A. Patino-Guerrero, M. Hasany, M.O. Ansari, A. Memic, A. Dolatshahi-Pirouz, M. Nikkhah, Electroconductive biomaterials for cardiac tissue engineering, Acta Biomater. 139 (2022) 118-140.
[68] B. Podsiadły, P. Walter, M. Kami
ński, A. Skalski, M. Słoma, Electrically Conductive Nanocomposite Fibers for Flexible and Structural Electronics, Appl. Sci. 12 (2022) 941.
[69] S.M.A. Mokhtar, E. Alvarez de Eulate, M. Yamada, T.W. Prow, D.R. Evans, Conducting polymers in wearable devices, Med. Devices Sens. 4 (2021) e10160.
[70] S. Peng, Y. Yu, S. Wu, C.-H. Wang, Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications, ACS Appl. Mater. Interfaces 13 (2021) 43831-43854.
[71] C. Park, M.S. Kim, H.H. Kim, S.-H. Sunwoo, D.J. Jung, M.K. Choi, D.-H. Kim, Stretchable conductive nanocomposites and their applications in wearable devices, Appl. Phys. Rev. 9 (2022).
[72] C.A.R. Chapman, E.A. Cuttaz, J.A. Goding, R.A. Green, Actively controlled local drug delivery using conductive polymerbased devices, Appl. Phys. Lett. 116 (2020).
[73] S. Adepu, S. Ramakrishna, Controlled Drug Delivery Systems: Current Status and Future Directions, Molecules 26 (2021) 5905.
[74] M.D. Ashton, P.A. Cooper, S. Municoy, M.F. Desimone, D. Cheneler, S.D. Shnyder, J.G. Hardy, Controlled Bioactive
Delivery Using Degradable Electroactive Polymers, Biomacromolecules 23 (2022) 3031-3040.
[75] M.-L. Laracuente, M.H. Yu, K.J. McHugh, Zero-order drug delivery: State of the art and future prospects, J. Control. Release 327 (2020) 834-856.
[76] S. Gungordu Er, A. Kelly, S.B.W. Jayasuriya, M. Edirisinghe, Nanofiber Based on Electrically Conductive Materials for
Biosensor Applications, Biomed. Mater. Devices (2022) https://doi.org/10.1007/s44174-022-00050-z.