Water Pollutants and Approaches for Their Removal

Document Type : Review Article

Authors

1 School of Life Sciences, University of Science and Technology of China, 443 Huangshan Road, Hefei, Anhui 230027, China

2 CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

Abstract

Pollution has emerged as a pressing global concern, as it negatively impacts various water bodies and poses severe threats to both human and aquatic life. Therefore, preventing and mitigating the adverse effects of pollutants on the environment and human health is of utmost importance. Comprehensive understanding of the sources, impacts, and treatment methods of different pollutants is essential. There are several methods available for removing pollutants from water, including physical, chemical, and biological approaches. Each technique possesses its unique advantages and limitations, and selecting the appropriate method largely depends on the nature and extent of contamination, cost, and efficiency. Thus, it is crucial to utilize a combination of different methods to detect and eliminate pollution more effectively. This review provides a detailed analysis of diverse pollutants found in water and the approaches adopted for their elimination, environmental regulations, and new pollutant detection techniques. It aims to compare and evaluate these methodologies for taking crucial steps in removing pollutants from water bodies. The significance of ongoing research in this field is also highlighted to improve and advance pollution prevention techniques in aquatic environments.

Graphical Abstract

Water Pollutants and Approaches for Their Removal

Keywords


 [1] E.N. Zare, M.M. Lakouraj, N. Kasirian, Fabrication and Characterization of Dextrin-g-Polypyrrole/Graphene Oxide
Nanocomposite for Effective Removal of Pb (II) and Methylene Blue Dye from Aqueous Solutions, Iran. J. Polym. Sci.
Technol.(Persian). 30 (2017) 447–462.
[2] E. Nazarzadeh Zare, A. Mudhoo, M. Ali Khan, M. Otero, Z.M.A. Bundhoo, M. Patel, A. Srivastava, C. Navarathna, T. Mlsna, D. Mohan, Smart Adsorbents for Aquatic Environmental Remediation, Small. 17 (2021) 2007840.
[3] E. Nazarzadeh Zare, M. Mansour Lakouraj, J. Alizadeh Feremi, Rhodamine B Dye Removal from Aqueous Solutions Using Poly (N-vinylpyrrolidone-co-maleic anhydride)/Rice Husk Biocompatible Nanocomposite: Isothermal, Kinetics and
Thermodynamic Studies, Iran. J. Polym. Sci. Technol. 31 (2018) 81–92.
[4] E.N. Zare, A. Motahari, M. Sillanpää, Nanoadsorbents based on conducting polymer nanocomposites with main focus on polyaniline and its derivatives for removal of heavy metal ions/dyes: A review, Environ. Res. 162 (2018) 173–195.
[5] E.N. Zare, A. Mudhoo, M.A. Khan, M. Otero, Z.M.A. Bundhoo, C. Navarathna, M. Patel, A. Srivastava, C.U. Pittman Jr, T.
Mlsna, Water decontamination using bio-based, chemically functionalized, doped, and ionic liquid-enhanced adsorbents,
Environ. Chem. Lett. 19 (2021) 3075–3114.
[6] E.C. Okpara, O.C. Olatunde, O.B. Wojuola, D.C. Onwudiwe, Applications of Transition Metal Oxides and Chalcogenides and their Composites in Water Treatment: a review, Environ. Adv. 11 (2023) 100341.
[7] V. Srivastava, E.N. Zare, P. Makvandi, X. qi Zheng, S. Iftekhar, A. Wu, V.V.T. Padil, B. Mokhtari, R.S. Varma, F.R. Tay, M.
Sillanpaa, Cytotoxic aquatic pollutants and their removal by nanocomposite-based sorbents, Chemosphere. 258 (2020) 127324.
[8] J. Hosseini, E.N. Zare, D. Ajloo, Experimental and theoretical calculation investigation on effective adsorption of lead(II) onto poly(aniline-co-pyrrole) nanospheres, J. Mol. Liq. 296 (2019) 111789 (1–12).
[9] M.M. Lakouraj, F. Hasanzadeh, E.N. Zare, Nanogel and super-paramagnetic nanocomposite of thiacalix[4]arene functionalized chitosan: synthesis, characterization and heavy metal sorption, Iran. Polym. J. (English Ed. 23 (2014) 933–945.
[10] H.D. Beyene, T.G. Ambaye, Application of sustainable nanocomposites for water purification process, in: Sustain. Polym. Compos. Nanocomposites, 2019: pp. 387–412.
[11] S. Iftekhar, G. Heidari, N. Amanat, E.N. Zare, M.B. Asif, M. Hassanpour, V.P. Lehto, M. Sillanpaa, Porous materials for the recovery of rare earth elements, platinum group metals, and other valuable metals: a review, Environ. Chem. Lett. 20 (2022) 3697–3746.
[12] A.E. Evans, J. Mateo-Sagasta, M. Qadir, E. Boelee, A. Ippolito, Agricultural water pollution: key knowledge gaps and research needs, Curr. Opin. Environ. Sustain. 36 (2019) 20–27.
[13] Y. Cao, A.W. Bark, W.P. Williams, Measuring the responses of macroinvertebrate communities to water pollution: A
comparison of multivariate approaches, biotic and diversity indices, Hydrobiologia. 341 (1996) 1–19.
[14] A.K. Dwivedi, Researches in water pollution
: a review, Int. Res. J. Nat. Appl. Sci. 4 (2017) 118–142.
[15] L.Lin, H. Yang, X. Xu, Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 10(2022) 880246.
[16] A.J. Barbera, V.D. McConnell, The impact of environmental regulations on industry productivity: Direct and indirect effects, J. Environ. Econ. Manage. 18 (1990) 50–65.
[17] M. Sophocleous, Interactions between groundwater and surface water: The state of the science, Hydrogeol. J. 10 (2002) 52– 67.
[18] A. Ojha, Materials in Electrochemical Detection of Water Pollutants. In: Pooja, D., Kumar, P., Singh, P., Patil, S. (eds) Sensors in Water Pollutants Monitoring: Role of Material. Advanced Functional Materials and Sensors. Springer, Singapore.
[19] M. Syafrudin, R.A. Kristanti, A. Yuniarto, T. Hadibarata, J. Rhee, Pesticides in Drinking Water — A Review, (2021).
[20] M. Biziuk, A. Przyjazny, J. Czerwinski, M. Wiergowski, Occurrence and determination of pesticides in natural and treated waters, J. Chromatogr. A. 754 (1996) 103–123.
[21] S. Ben Hamida, S. Iftekhar, I. Ambat, V. Srivastava, M. Sillanpää, Z. Amri, N. Ladhari, Dry and wet ozonation of denim:
Degradation products, reaction mechanism, toxicity and cytotoxicity assessment, Chemosphere. 203 (2018) 514–520.
[22] F.R. Abe, J.N. Mendonça, L.A.B. Moraes, G.A.R. d. Oliveira, C. Gravato, A.M.V.M. Soares, D.P. d. Oliveira, Toxicological
and behavioral responses as a tool to assess the effects of natural and synthetic dyes on zebrafish early life, Chemosphere. 178 (2017) 282–290.
[23] F.R. Abe, A.M.V.M. Soares, D.P. d. Oliveira, C. Gravato, Toxicity of dyes to zebrafish at the biochemical level: Cellular
energy allocation and neurotoxicity, Environ. Pollut. 235 (2018) 255–262.
[24] M. Houde, J.W. Martin, R.J. Letcher, K.R. Solomon, D.C.G. Muir, Biological monitoring of polyfluoroalkyl substances: A
review, Environ. Sci. Technol. 40 (2006) 3463–3473.
[25] Y. Hu, G. Liu, J. Rood, L. Liang, G.A. Bray, L. de Jonge, B. Coull, J.D. Furtado, L. Qi, P. Grandjean, Q. Sun, Perfluoroalkyl
substances and changes in bone mineral density: A prospective analysis in the POUNDS-LOST study, Environ. Res. 179 (2019) 108775.
[26] A. Ritscher, Z. Wang, M. Scheringer, J.M. Boucher, L. Ahrens, U. Berger, S. Bintein, S.K. Bopp, D. Borg, A.M. Buser, I.
Cousins, J. Dewitt, T. Fletcher, C. Green, Zürich Statement on Future Actions on Per- and Polyfluoroalkyl Substances, 126
(2018) 1–5.
[27] S. Iftekhar, A. Deb, G. Heidari, M. Sillanpää, V.-P. Lehto, B. Doshi, M. Hosseinzadeh, E.N. Zare, A review on the
effectiveness of nanocomposites for the treatment and recovery of oil spill, Environ. Sci. Pollut. Res. 30 (2023) 16947–16983.
[28] J. Fawell, M.J. Nieuwenhuijsen, Contaminants in drinking water, Br. Med. Bull. 68 (2003) 199–208.
[29] R.F. Spalding, M.E. Exner, Occurrence of Nitrate in Groundwater—A Review, J. Environ. Qual. 22 (1993) 392–402.
[30] World Health Organization, Nitrate and nitrite in Drinking-water Background document for development of, Drink. Water. 2 (2009) 21.
[31] S. Suthar, P. Bishnoi, S. Singh, P.K. Mutiyar, A.K. Nema, N.S. Patil, Nitrate contamination in groundwater of some rural
areas of Rajasthan, India, J. Hazard. Mater. 171 (2009) 189–199.
[32] P.K.Rai, S.S.Lee, M.Zhang, Y.F. Tsang, K.H.Kim, Heavy metals in food crops: Health risks, fate, mechanisms, and
management, Environ. Int. 125(2019) 365-385.
[33] H. Ali, E. Khan, I. Ilahi, Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation, J. Chem. 2019 (2019).
[34] M.A. Tiffany, J.W. Winchester, R.H. Loucks, M. Tiffany, J.W. Winchester, R.H. Loucks, Natural and pollution sources of
iodine, bromine, and chlorine in the Great Lakes. J Water Pollut Control. 41(1969):1319-29.
[35] N.J. Raju, S. Dey, K. Das, Fluoride contamination in groundwaters of Sonbhadra District, Uttar Pradesh, India, Curr. Sci. 96 (2009) 979–985.
[36] A.K. Susheela, Fluorosis management programme in India, Curr. Sci. 77 (1999) 1250–1256.
[37] P.D. Sreedevi, S. Ahmed, B. Made, E. Ledoux, J.M. Gandolfi, Association of hydrogeological factors in temporal variations of fluoride concentration in a crystalline aquifer in India, Environ. Geol. 50 (2006) 1–11.
[38] V. Geissen, H. Mol, E. Klumpp, G. Umlauf, M. Nadal, M. van der Ploeg, S.E.A.T.M. van de Zee, C.J. Ritsema, Emerging
pollutants in the environment: A challenge for water resource management, Int. Soil Water Conserv. Res. 3 (2015) 57–65.
[39] M. Petrovic, D. Barceló, Liquid chromatography-mass spectrometry in the analysis of emerging environmental contaminants, Anal. Bioanal. Chem. 385 (2006) 422–424.
[40] R. Kallenborn, E. Brorström-Lundén, L.O. Reiersen, S. Wilson, Pharmaceuticals and personal care products (PPCPs) in Arctic environments: indicator contaminants for assessing local and remote anthropogenic sources in a pristine ecosystem in change, Environ. Sci. Pollut. Res. 25 (2018) 33001–33013.
[41] J.L. Liu, M.H. Wong, Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China, Environ. Int. 59 (2013) 208–224.
[42] C.I. Kosma, D.A. Lambropoulou, T.A. Albanis, Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece, J. Hazard. Mater. 179 (2010) 804–817.
[43] M. Scheurer, H.J. Brauch, F.T. Lange, Analysis and occurrence of seven artificial sweeteners in German waste water andئ surface water and in soil aquifer treatment (SAT), Anal. Bioanal. Chem. 394 (2009) 1585–1594.
[44] S.D. Richardson, S.Y. Kimura, Water analysis: Emerging contaminants and current issues, Anal. Chem. 92 (2020) 473–505.
[45] T. Ivankovi
ć, J. Hrenović, Surfactants in the environment, Arh. Hig. Rada Toksikol. 61 (2010) 95–110.
[46] T. Cserhati, Alkyl ethoxylated and alkylphenol ethoxylated nonionic surfactants: Interaction with bioactive compounds and biological effects, Environ. Health Perspect. 103 (1995) 358–364.
[47] A. Bo, S. Sarina, H. Liu, Z. Zheng, Q. Xiao, Y. Gu, G.A. Ayoko, H. Zhu, Efficient Removal of Cationic and Anionic
Radioactive Pollutants from Water Using Hydrotalcite-Based Getters, ACS Appl. Mater. Interfaces. 8 (2016) 16503–16510.
[48] S.K. Verma, Sources of Nuclear Pollutants and Their Controls, Energy, Environ. Sustain. (2019) 139–147.
[49] P.A.M. Tallon, B. Magajna, C. Lofranco, K.A.M.T.I.N. Leung, Microbial indicators of faecal contamination in water
: A
current perspective ensuring the safety of drinking water is an ongoing process. In developed countries, drinking water
regulations require the monitoring of numerous chemical and microbiologic, Public Health. 166 (2005) 139–166.
[50] N.J. Ashbolt, Microbial Contamination of Drinking Water and Human Health from Community Water Systems, Curr. Environ. Heal. Reports. 2 (2015) 95–106.
[51] K.S. Prasad, A.B. Arun, P.D. Rekha, C.C. Young, J.L. Chang, J.M. Zen, A microbial sensor based on direct electron transfer at Shewanella Sp. drop-coated screen-printed carbon electrodes, Electroanalysis. 21 (2009) 1646–1650.
[52] B. Huang, C. Lei, C. Wei, G. Zeng, Chlorinated volatile organic compounds (Cl-VOCs) in environment—sources, potential human health impacts, and current remediation technologies, Environ. Int. 71(2014) 118-138.
[53] S. Pawlowski, J.G. Crespo, S. Velizarov, Profiled ion exchange membranes: A comprehensible review, Int. J. Mol. Sci. 20
(2019) 165(1–15).
[54] G. Crini, E. Lichtfouse, L.D. Wilson, N. Morin-Crini, Conventional and non-conventional adsorbents for wastewater
treatment, Environ. Chem. Lett. 17 (2019) 195–213.
[55] H. Daglar, C. Altintas, I. Erucar, G. Heidari, E.N. Zare, O. Moradi, V. Srivastava, S. Iftekhar, S. Keskin, M. Sillanpää, Metalorganic framework-based materials for the abatement of air pollution and decontamination of wastewater, Chemosphere. 303 (2022) 135082.
[56] F. Hassanzadeh-Afruzi, G. Heidari, A. Maleki, Magnetic Nanocomposite Hydrogel based on Arabic Gum for Remediation of Lead(II) from Contaminated Water, Mater. Chem. Horizons. 1 (2022) 107–122.
[57] G. Heidari, F.H. Afruzi, E.N. Zare, Molecularly Imprinted Magnetic Nanocomposite Based on Carboxymethyl Dextrin for Removal of Ciprofloxacin Antibiotic from Contaminated Water, Nanomaterials. 13 (2023).
[58] F. Hassanzadeh-Afruzi, F. Esmailzadeh, G. Heidari, A. Maleki, E. Nazarzadeh Zare, Arabic Gum-Grafted-Hydrolyzed
Polyacrylonitrile@ZnFe
2O4 as a Magnetic Adsorbent for Remediation of Levofloxacin Antibiotic from Aqueous Solutions,
ACS Omega. 8 (2023) 6337–6348.
[59] M.M. Salehi, F. Hassanzadeh-Afruzi, G. Heidari, A. Maleki, E. Nazarzadeh Zare, In situ preparation of MOF-199 into the
carrageenan-grafted-polyacrylamide@Fe
3O4 matrix for enhanced adsorption of levofloxacin and cefixime antibiotics from water, Environ. Res. 233 (2023) 116466.
[60] J.Q. Jiang, The role of coagulation in water treatment, Curr. Opin. Chem. Eng. 8 (2015) 36–44.
[61] A. Tonhato Junior, S.D.M. Hasan, N.Y. Sebastien, Optimization of Coagulation/Flocculation Treatment of Brewery
Wastewater Employing Organic Flocculant Based of Vegetable Tannin, Water. Air. Soil Pollut. 230 (2019) 202.
[62] S. Hussain, J. Awad, B. Sarkar, C.W.K. Chow, J. Duan, J. van Leeuwen, Coagulation of dissolved organic matter in surface water by novel titanium (III) chloride: Mechanistic surface chemical and spectroscopic characterisation, Sep. Purif. Technol. 213 (2019) 213–223.
[63] B. Zhang, M. Chen, C. Zhang, H. He, Electrochemical oxidation of gaseous benzene on a Sb-SnO2/foam Ti nano-coating electrode in all-solid cell, Chemosphere. 217 (2019) 780–789.
[64] U. Ghimire, M. Jang, S.P. Jung, D. Park, S.J. Park, H. Yu, S.E. Oh, Electrochemical removal of ammonium nitrogen and cod of domestic wastewater using platinum coated titanium as an anode electrode, Energies. 12 (2019) 883.
[65] L. Zang, Energy Efficiency and Renewable Energy Through Nanotechnology, 2011.
https://doi.org/10.2174/97816080528511060101
[66] A. Subramani, J.G. Jacangelo, Emerging desalination technologies for water treatment: A critical review, Water Res. 75 (2015) 164–187.
[67] V.K. Gupta, I. Ali, T.A. Saleh, A. Nayak, S. Agarwal, Chemical treatment technologies for waste-water recycling - An
overview, RSC Adv. 2 (2012) 6380–6388.
[68] A.S. Sheoran, V. Sheoran, Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review, Miner. Eng. 19 (2006) 105–116.
[69] A. Cassano, N.K. Rastogi, A. Basile, Membrane technologies for water treatment and reuse in the food and beverage
industries, in: A. Basile, A. Cassano, N.K. Rastogi (Eds.), Adv. Membr. Technol. Water Treat. Mater. Process. Appl., 1st ed.,
Elsevier, 2015: pp. 551–580.
[70] H.S. Rai, M.S. Bhattacharyya, J. Singh, T.K. Bansal, P. Vats, U.C. Banerjee, Removal of dyes from the effluent of textile and dyestuff manufacturing industry: A review of emerging techniques with reference to biological treatment, Crit. Rev. Environ. Sci. Technol. 35 (2005) 219–238.
[71] L. Ho, E. Sawade, G. Newcombe, Biological treatment options for cyanobacteria metabolite removal - A review, Water Res. 46 (2012) 1536–1548.
[72] M. Akter, M. Bhattacharjee, A.K. Dhar, F.B. Rahman, S. Haque, T.U. Rashid, S.M. Kabir, Cellulose-Based Hydrogels for
Wastewater Treatment: A Concise Review, Gels. 7 (2021)