Significance of Copper Benzene 1,3,5-tricarboxylate Metal Organic Framework: Environmental and Biomedical Applications

Document Type : Review Article

Authors

1 Department of Chemistry, Shahid Chamran University of Ahvaz, Ahvaz 61357583151, Iran

2 Department of Respiratory and Critical Care Medicine, Nano Medical Innovation & Collaboration Group (NMICG), The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China

3 Department of Science & Technology, Department of Urology, Nano Medical Innovation & Collaboration Group (NMICG), The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China

Abstract

Copper benzene 1,3,5-tri carboxylates are widely used in research due to their numerous advantages. With abundant resources, excellent catalytic activity, and relatively simple synthetic procedures, Cu MOFs are ideal for activating starting materials and creating complex structural designs. The tunable conditions promote useful reactions such as oxidation, click chemistry, and Friedel-Crafts alkylation. All these properties make Cu MOFs an excellent choice for scientific research. This review provides an overview of this rapidly evolving research field, highlighting novel Cu3(BTC)2 synthesis strategies and Cu3(BTC)2 applications such as electrochemical sensing and metal ion extraction, energy storage, drug delivery, and its role as a catalyst.

Graphical Abstract

Significance of Copper Benzene 1,3,5-tricarboxylate Metal Organic Framework: Environmental and Biomedical Applications

Keywords


 [1] Y. Liu, P. Ghimire, M. Jaroniec, Copper benzene-1, 3, 5-tricarboxylate (Cu-BTC) metal-organic framework (MOF) and porous carbon composites as efficient carbon dioxide adsorbents, J. Colloid Interface Sci. 535 (2019) 122-132.
[2] A. Domán, J. Madarász, G. Sáfrán, Y. Wang, K. László, Copper benzene-1, 3, 5-tricarboxylate (HKUST-1)–graphene oxide
pellets for methane adsorption, Microporous Mesoporous Mater. 316 (2021) 110948.
[3] A. Domán, S. Klébert, J. Madarász, G. Sáfrán, Y. Wang, K. László, Graphene oxide protected copper benzene-1, 3, 5-
tricarboxylate for clean energy gas adsorption, Nanomaterials 10(6) (2020) 1182.
[4] R. Ramachandran, C. Zhao, D. Luo, K. Wang, F. Wang, Synthesis of copper benzene-1, 3, 5-tricarboxylate metal organic
frameworks with mixed phases as the electrode material for supercapacitor applications, Appl. Surf. Sci. 460 (2018) 33-39.
[5] A. Domán, B. Nagy, L.P. Nichele, D. Srankó, J. Madarász, K. László, Pressure resistance of copper benzene-1, 3, 5-
tricarboxylate–carbon aerogel composites, Appl. Surf. Sci. 434 (2018) 1300-1310.
[6] P. Hu, C. Meng, Y. Cai, P. Wang, H. Zhou, X. Li, A. Yuan, Supernano crystals boost the initial coulombic efficiency and
capacity of copper benzene-1, 3, 5-tricarboxylate for Li-Ion batteries, Energy & Fuels 37(4) (2023) 3134-3141.
[7] P. Wang, M. Shen, H. Zhou, C. Meng, A. Yuan, MOF
derived CuS@CuBTC composites as highperformance anodes for
lithium
ion batteries, Small 15(47) (2019) 1903522.
[8] L. Jiao, J.Y.R. Seow, W.S. Skinner, Z.U. Wang, H.-L. Jiang, Metal–organic frameworks: Structures and functional applications, Mater. Today 27 (2019) 43-68.
[9] X. Zhang, S. Zhang, Y. Tang, X. Huang, H. Pang, Recent advances and challenges of metal–organic framework/graphenebased composites, Compos. B: Eng 230 (2022) 109532.
[10] N. Baig, I. Kammakakam, W. Falath, Nanomaterials: A review of synthesis methods, properties, recent progress, and
challenges, Mater. Adv. 2(6) (2021) 1821-1871.
[11] Q. Zhao, L. Zhu, G. Lin, G. Chen, B. Liu, L. Zhang, T. Duan, J. Lei, Controllable synthesis of porous Cu-BTC@ polymer
composite beads for iodine capture, ACS Appl. Mater. Interfaces 11(45) (2019) 42635-42645.
[12] K. Pirzadeh, A.A. Ghoreyshi, M. Rahimnejad, M. Mohammadi, Optimization of electrochemically synthesized Cu
3(BTC)2 by Taguchi method for CO2/N2 separation and data validation through artificial neural network modeling, Front. Chem. Sci. Eng. 14 (2020) 233-247.
[13] E. Irandoost, H. Farsi, A. Farrokhi, Effects of water content on electrochemical capacitive behavior of nanostructured Cu3 (BTC) 2 MOF prepared in aqueous solution, Electrochim. Acta 368 (2021) 137616.
[14] Z. Su, Jianling Zhang, Bingxing Zhang, Xiuyan Cheng, Mingzhao Xu, Yufei Sha, Yanyue Wang, Jingyang Hu, Lirong Zheng, and Buxing Han, Cu 3 (BTC) 2 nanoflakes synthesized in an ionic liquid/water binary solvent and their catalytic properties, Soft Matter 18(32) 6009-6014.
[15] T.A. Agbaje, S. Singh, K.S.K. Reddy, K. Polychronopoulou, L.F. Vega, M. Khaleel, K. Wang, G.N. Karanikolos, Salt-free
synthesis of Cu-BTC metal-organic framework exhibiting mesoporosity and enhanced carbon dioxide adsorption, Microporous and Mesoporous Mater. 324 (2021) 111265.
[16] Y. Wang, C. Yang, C. Zhang, M. Duan, H. Wang, H. Fan, Y. Li, J. Shangguan, J. Lin, Hierarchical Porous MOF-199 Regulated by PVP for Desulfurization at Ambient Conditions, Available at SSRN 3994498.
[17] J. Hromadka, B. Tokay, R. Correia, S.P. Morgan, S. Korposh, Carbon dioxide measurements using long period grating optical fibre sensor coated with metal organic framework HKUST-1, Sens. Actuators B: Chem. 255 (2018) 2483-2494.
[18] Q. Wang, M. Lian, X. Zhu, X. Chen, Excellent humidity sensor based on ultrathin HKUST-1 nanosheets, RSC Adv. 11(1)
(2021) 192-197.
[19] X. Liu, L. Chen, Y. Gao, J. Li, J. Sun, T. Gan, Molecularly imprinted polymer capped Au@ HKUST- 1 nanocapsules-based electrochemical sensing platform for monitoring isoproturon herbicide in water at sub- nanomole level, J. Environ. Chem. Eng. 10(3) (2022) 107661.
[20] M. Ghalkhani, M. Gharagozlou, E. Sohouli, E.M. Khosrowshahi, Preparation of an electrochemical sensor based on a HKUST- 1/CoFe2O4/SiO2-modified carbon paste electrode for determination of azaperone, Microchem. J. 175 (2022) 107199.
[21] W. Zhao, Y. Long, Y. He, J. Cai, M. Liu, HNTs@ HKUST-1 strengthened PAAm hydrogel for strain sensing and antibacterial application, Microporous and Mesoporous Mater. 344 (2022) 112207.
[22] L. Zhao, X. Duan, M.R. Azhar, H. Sun, X. Fang, S. Wang, Selective adsorption of rare earth ions from aqueous solution on metal-organic framework HKUST-1, Chem. Eng. J. Adv. 1 (2020) 100009.
[23] P. Goyal, A. Paruthi, D. Menon, R. Behara, A. Jaiswal, V. Keerthy, A. Kumar, V. Krishnan, S.K. Misra, Fe doped bimetallic
HKUST-1 MOF with enhanced water stability for trapping Pb (II) with high adsorption capacity, Chem. Eng. J. 430 (2022)
133088.
[24] D.G. Madden, D. O’Nolan, N. Rampal, R. Babu, C. Çamur, A.N. Al Shakhs, S.-Y. Zhang, G.A. Rance, J. Perez, N.P. Maria
Casati, Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity, J. Am.
Chem. Soc. 144(30) (2022) 13729-13739.
[25] S. Sundriyal, V. Shrivastav, S.K. Bhardwaj, S. Mishra, A. Deep, Tetracyanoquinodimethane doped copper-organic framework electrode with excellent electrochemical performance for energy storage applications, Electrochim. Acta 380 (2021) 138229.
[26] I.G. Koryakina, S.V. Bachinin, E.N. Gerasimova, M.V. Timofeeva, S.A. Shipilovskikh, A.S. Bukatin, A. Sakhatskii, A.S.
Timin, V.A. Milichko, M.V. Zyuzin, Microfluidic synthesis of metal-organic framework crystals with surface defects for
enhanced molecular loading, Chem. Eng. J. 452 (2023) 139450.
[27] H. Nabipour, M. Mansoorianfar, Y. Hu, Carboxymethyl cellulose-coated HKUST-1 for baclofen drug delivery in vitro, Chem. Pap. 76(10) (2022) 6557-6566.
[28] H. Djahaniani, N. Ghavidel, H. Kazemian, Green and facile synthesis of lignin/HKUST-1 as a novel hybrid biopolymer metalorganic-framework for a pH-controlled drug release system, Int. J. Biol. Macromol. 242 (2023) 124627.
[29] Y. Zhao, W. Wang, X. Li, H. Lu, Z. Shi, Y. Wang, C. Zhang, J. Hu, G. Shan, Functional porous MOF-derived CuO octahedra for harmonic soliton molecule pulses generation, Acs Photonics 7(9) (2020) 2440-2447.
[30] S.-I. Ohira, N. Nakamura, M. Endo, Y. Miki, Y. Hirose, K. Toda, Ultra-sensitive Trace-Water Optical Sensor with In situsynthesized Metal-Organic Framework in Glass Paper, Anal Sci. 34(4) (2018) 495-500.
[31] T.N. Nguyen, F.M. Ebrahim, K.C. Stylianou, Photoluminescent, upconversion luminescent and nonlinear optical metalorganic frameworks: From fundamental photophysics to potential applications, Coord. Chem. Rev. 377 (2018) 259-306.
[32] Y. Cui, Y. Yue, G. Qian, B. Chen, Luminescent functional metal–organic frameworks, Chem. Rev. 112(2) (2012) 1126-1162.
[33] N.K. Kulachenkov, D. Sun, Y.A. Mezenov, A.N. Yankin, S. Rzhevskiy, V. Dyachuk, A. Nominé, G. Medjahdi, E.A. Pidko,
V.A. Milichko, Photochromic free MOF
based nearinfrared optical switch, Angew. Chem., Int. Ed. Engl. 59(36) (2020) 15522-15526.
[34] A. Nagaraj, D. Amarajothi, Cu3 (BTC) 2 as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes, J. Colloid Interface Sci. 494 (2017) 282-289.
[35] M. Meldal, C.W. Tornøe, Cu-catalyzed azide- alkyne cycloaddition, Chem. reviews 108(8) (2008) 2952-3015.
[36] P.S. Abhari, F. Manteghi, Z. Tehrani, Adsorption of lead ions by a green AC/HKUST-1 nanocomposite, Nanomaterials 10(9) (2020) 1647.
[37] Z. Fan, Z. Wang, M. Cokoja, R.A. Fischer, Defect engineering: an effective tool for enhancing the catalytic performance of copper-MOFs for the click reaction and the A 3 coupling, Catal. Sci. Technol. 11(7) (2021) 2396-2402.
[38] S. Fan, W. Dong, X. Huang, H. Gao, J. Wang, Z. Jin, J. Tang, G. Wang, In situ-induced synthesis of magnetic Cu-CuFe
2O4@ HKUST-1 heterostructures with enhanced catalytic performance for selective aerobic benzylic C–H oxidation, Acs Catalysis 7(1) (2017) 243-249.
[39] P. Guo, C. Froese, Q. Fu, Y.-T. Chen, B. Peng, W. Kleist, R.A. Fischer, M. Muhler, Y. Wang, CuPd mixed-metal HKUST-1
as a catalyst for aerobic alcohol oxidation, J. Phys. Chem. C 122(37) (2018) 21433-21440.