MXenes and Their Composites: A Versatile Platform for Biomedical Applications

Document Type : Perspective

Authors

1 Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia

2 School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia

3 Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran

Abstract

MXenes have potential applications in biomedicine, ranging from sensors and cancer theranostics to targeted drug delivery and tissue engineering/regenerative medicine. They are characterized by fascinating structural, optical, thermal, mechanical, electronic, and biological features, making them promising for various biomedical purposes. MXenes with high surface area, excellent conductivity, hydrophilicity, biocompatibility, high atomic numbers, and unique paramagnetic behavior have been hybridized with organic/inorganic materials to develop various biomedical devices, biosensors, tissue engineering scaffolds, antimicrobial agents, etc. Ongoing research in this field is expected to lead to the development of even more MXene-based biomedical devices in the future. Despite the biomedical potential of MXene-based composites, their biosafety and potential environmental risks need to be in-depth evaluated. In addition, physiological stability, decomposition rate, and controlled/sustained drug release as well as limited in-vivo studies and systematic guidelines are crucial aspects that should be considered for developing next-generation multifunctional MXene-based composites in biomedicine. Notably, clinical translation studies ought to be systematically addressed before these materials can be used in clinical applications. Despite their promising potential, challenges remain in the large-scale production and functionalization of MXenes. In this perspective, important challenges for in vivo applications, pitfalls, and future outlooks for the employment of MXenes in biomedicine are deliberated. The progress and biomedical applications of MXenes have been briefly reviewed, and the development background of MXenes has been introduced.

Graphical Abstract

MXenes and Their Composites: A Versatile Platform for Biomedical Applications

Keywords


 [1] S.M. George, B. Kandasubramanian, Advancements in MXene-Polymer composites for various biomedical applications, Ceram. Int., 46 (2020) 8522-8535.
[2] K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications, Chem. Soc. Rev., 47 (2018) 5109-5124.
[3] M. Soleymaniha, M.A. Shahbazi, A.R. Rafieerad, A. Maleki, A. Amiri, Promoting role of MXene nanosheets in biomedical
sciences: therapeutic and biosensing innovations, Adv. Healthc. Mater., 8 (2019) 1801137.
[4] X. Lin, Z. Li, J. Qiu, Q. Wang, J. Wang, H. Zhang, T. Chen, Fascinating MXene nanomaterials: emerging opportunities in the biomedical field, Biomater. Sci., 9 (2021) 5437-5471.
[5] A. Zamhuri, G.P. Lim, N.L. Ma, K.S. Tee, C.F. Soon, MXene in the lens of biomedical engineering: synthesis, applications and future outlook, Biomed. Eng. Online, 20 (2021) 1-24.
[6] P. Iravani, S. Iravani, R.S. Varma, MXene-Chitosan Composites and Their Biomedical Potentials, Micromachines, 13 (2022) 1383.
[7] S. Iravani, MXenes and MXene-based (nano)structures: A perspective on greener synthesis and biomedical prospects, Ceram. Int., 48 (2022) 24144-24156.
[8] S. Iravani, R.S. Varma, MXenes for Cancer Therapy and Diagnosis: Recent Advances and Current Challenges, ACS Biomater. Sci. Eng, 7 (2021) 1900–1913.
[9] P.P. Michałowski, M. Anayee, T.S. Mathis, S. Kozdra, A. Wójcik, K. Hantanasirisakul, I. Jóźwik, A. Piątkowska, M.
Możdżonek, A. Malinowska, Oxycarbide MXenes and MAX phases identification using monoatomic layer-by-layer analysis
with ultralow-energy secondary-ion mass spectrometry, Nat. Nanotechnol, 17 (2022) 1192-1197.
[10] W. Hong, B.C. Wyatt, S.K. Nemani, B. Anasori, Double transition-metal MXenes: Atomistic design of two-dimensional
carbides and nitrides, MRS Bulletin, 45 (2020) 850-861.
[11] K.R.G. Lim, M. Shekhirev, B.C. Wyatt, B. Anasori, Y. Gogotsi, Z.W. Seh, Fundamentals of MXene synthesis, Nat. Synth., 1
(2022) 601-614.
[12] M. Sokol, V. Natu, S. Kota, M.W. Barsoum, On the chemical diversity of the MAX phases, Trends Chem., 1 (2019) 210-223.
[13] J. Halim, S. Kota, M.R. Lukatskaya, M. Naguib, M.Q. Zhao, E.J. Moon, J. Pitock, J. Nanda, S.J. May, Y. Gogotsi, Synthesis
and characterization of 2D molybdenum carbide (MXene), Adv. Funct. Mater., 26 (2016) 3118-3127.
[14] J. Zhou, X. Zha, F.Y. Chen, Q. Ye, P. Eklund, S. Du, Q. Huang, A two
dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5, Angew. Chem., Int. Ed. Engl., 55 (2016) 5008-5013.
[15] B. Lu, Z. Zhu, B. Ma, W. Wang, R. Zhu, J. Zhang, 2D MXene nanomaterials for versatile biomedical applications: current trends and future prospects, Small, 17 (2021) 2100946.
[16] J. Huang, Z. Li, Y. Mao, Z. Li, Progress and biomedical applications of MXenes, Nano Select, 2 (2021) 1480-1508.
[17] Z.U.D. Babar, B.D. Ventura, R. Velotta, V. Iannotti, Advances and emerging challenges in MXenes and their nanocomposites for biosensing applications, RSC Adv, 12 (2022) 19590-19610.
[18] D. Dhamodharan, V. Dhinakaran, H.-S. Byun, MXenes: An emerging 2D material, Carbon, 192 (2022) 366-383.
[19] R. Garg, F. Vitale, Latest advances on MXenes in biomedical research and health care, MRS Bulletin, 48 (2023) 283–290.
[20] S. Hao, H. Han, Z. Yang, M. Chen, Y. Jiang, G. Lu, L. Dong, H. Wen, H. Li, J. Liu, L. Wu, Z. Wang, F. Wan, Recent
Advancements on Photothermal Conversion and Antibacterial Applications over MXenes-Based Materials, Nano-Micro Lett, 14 (2022) 178.
[21] S. Iravani, R.S. Varma, MXenes in photomedicine: advances and prospects Chem. Commun, 58 (2022) 7336-7350.
[22] S. Iravani, R.S. Varma, MXenes in Cancer Nanotheranostics, Nanomater.,12 (2022) 3360.
[23] A. Zarepour, S. Ahmadi, N. Rabiee, A. Zarrabi, S. Iravani, Self-Healing MXene- and Graphene-Based Composites: Properties and Applications, Nano-Micro Lett, 15 (2023) 100.
[24] Y. Gogotsi, B. Anasori, The Rise of MXenes, ACS Nano, 13 (2019) 8491–8494.
[25] H. Huang, R. Jiang, Y. Feng, H. Ouyang, N. Zhou, X. Zhang, Y. Wei, Recent development and prospects of surface
modification and biomedical applications of MXenes, Nanoscale, 12 (2020) 1325-1338.
[26] G.P. Lim, C.F. Soon, N.L. Ma, M. Morsin, N. Nayan, M.K. Ahmad, K.S. Tee, Cytotoxicity of MXene-based nanomaterials
for biomedical applications: A mini review, Environ. Res., 201 (2021) 111592.
[27] E. Mostafavi, S. Iravani, Mxene-graphene composites: A perspective on biomedical potentials, Nano-Micro Lett., 14 (2022) 130.
[28] S.P. Sreenilayam, I.U. Ahad, V. Nicolosi, D. Brabazon, Mxene materials based printed flexible devices for healthcare,
biomedical and energy storage applications, Mater. Today, 43 (2021) 99-131.
[29] A. Maleki, M. Ghomi, N. Nikfarjam, M. Akbari, E. Sharifi, M.A. Shahbazi, M. Kermanian, M. Seyedhamzeh, E. Nazarzadeh Zare, M. Mehrali, Biomedical Applications of MXene
Integrated Composites: Regenerative Medicine, Infection Therapy,
Cancer Treatment, and Biosensing, Adv. Funct. Mater., 32 (2022) 2203430.
[30] M.R. Farani, B.N. Khiarak, R. Tao, Z. Wang, S. Ahmadi, M. Hassanpour, M. Rabiee, M.R. Saeb, E.C. Lima, N. Rabiee, 2D
MXene nanocomposites: electrochemical and biomedical applications, Environ. Sci. Nano 9 (2022) 4038-4068.
[31] X. Han, J. Huang, H. Lin, Z. Wang, P. Li, Y. Chen, 2D ultrathin MXenebased drugdelivery nanoplatform for synergistic
photothermal ablation and chemotherapy of cancer, Adv. Healthc. Mater., 7 (2018) 1701394.
[32] H. Huang, C. Dong, W. Feng, Y. Wang, B. Huang, Y. Chen, Biomedical engineering of two-dimensional MXenes, Adv. Drug Deliv. Rev., (2022) 114178.
[33] H. Huang, R. Jiang, Y. Feng, H. Ouyang, N. Zhou, X. Zhang, Y. Wei, Recent development and prospects of surface
modification and biomedical applications of MXenes, Nanoscale, 12 (2020) 1325-1338.
[34] P. Iravani, S. Iravani, R.S. Varma, MXene-chitosan composites and their biomedical potentials, Micromachines, 13 (2022) 1383.
[35] K. Diedkova, A.D. Pogrebnjak, S. Kyrylenko, K. Smyrnova, V.V. Buranich, P. Horodek, P. Zukowski, T.N. Koltunowicz, P.
Galaszkiewicz, K. Makashina, V. Bondariev, M. Sahul, M. Čaplovičová, Y. Husak, W. Simka, V. Korniienko, A. Stolarczyk,
A. Blacha-Grzechnik, V. Balitskyi, V. Zahorodna, I. Baginskiy, U. Riekstina, O. Gogotsi, Y. Gogotsi, M. Pogorielov,
Polycaprolactone–MXene Nanofibrous Scaffolds for Tissue Engineering, ACS Appl. Mater. Interfaces, 15 (2023) 14033–
14047.
[36] H. Huang, C. Dong, W. Feng, Y. Wang, B. Huang, Y. Chen, Biomedical Engineering of Two-Dimensional MXenes, Adv.
Drug. Deliv. Rev., 184(2022) 114178.
[37] Y. Zhong, S. Huang, Z. Feng, Y. Fu, A. Mo, Recent advances and trends in the applications of MXene nanomaterials for tissue engineering and regeneration, J. Biomed. Mater. Res. A, 110 (2022) 1840-1859.
[38] S. Iravani, R.S. Varma, MXenes and MXene-based materials for tissue engineering and regenerative medicine: recent
advances, Mater. Adv, 2 (2021) 2906-2917.
[39] G. Basara, M. Saeidi-Javash, X. Ren, G. Bahcecioglu, B.C. Wyatt, B. Anasori, Y. Zhang, P. Zorlutuna, Electrically conductive 3D printed Ti
3C2Tx MXene-PEG composite constructs for cardiac tissue engineering, Acta Biomater., 139 (2022) 179-189.
[40] A. Maleki, M. Ghomi, N. Nikfarjam, M. Akbari, E. Sharifi, M.-A. Shahbazi, M. Kermanian, M. Seyedhamzeh, E. Nazarzadeh Zare, M. Mehrali, O. Moradi, F. Sefat, V. Mattoli, P. Makvandi, Y. Chen, Biomedical Applications of MXene-Integrated Composites: Regenerative Medicine, Infection Therapy, Cancer Treatment, and Biosensing, Adv. Funct. Mater, 32 (2022) 2203430.
[41] R. Huang, X. Chen, Y. Dong, X. Zhang, Y. Wei, Z. Yang, W. Li, Y. Guo, J. Liu, Z. Yang, H. Wang, L. Jin, MXene Composite
Nanofibers for Cell Culture and Tissue Engineering, ACS Appl. Bio Mater., 3 (2020) 2125–2131.
[42] S. Li, H. Lei, H. Liu, P. Song, S. Fan, L. Wu, D. Liao, G. Xian, L. Xiong, C. Zhou, H. Fan, Pulsed electrodeposition of
MXenes/HAp multiple biological functional coatings on 3D printed porous Ti-6Al-4V bone tissue engineering scaffold,
Surf. Coat. Technol., 464 (2023) 129532.
[43] S. Li, B. Gu, X. Li, S. Tang, L. Zheng, E. Ruiz-Hitzky, Z. Sun, C. Xu, X. Wang, MXene-Enhanced Chitin Composite Sponges
with Antibacterial and Hemostatic Activity for Wound Healing, Adv. Healthc. Mater., 11 (2022) 2102367.
[44] S. Wang, Z. Zhang, S. Wei, F. He, Z. Li, H.-H. Wang, Y. Huang, Z. Nie, Near-infrared light-controllable MXene hydrogel for tunable on-demand release of therapeutic proteins, Acta Biomater., 130 (2021) 138-148.
[45] A. Zamhuri, G.P. Lim, N.L. Ma, K.S. Tee, C.F. Soon, MXene in the lens of biomedical engineering: synthesis, applications
and future outlook, BioMed. Eng. OnLine 20 (2021) 1-24.
[46] C. Xing, S. Chen, X. Liang, Q. Liu, M. Qu, Q. Zou, J. Li, H. Tan, L. Liu, D. Fan, H. Zhang, Two-Dimensional MXene (Ti
3C2)-
Integrated Cellulose Hydrogels: Toward Smart Three-Dimensional Network Nanoplatforms Exhibiting Light-Induced Swelling and Bimodal Photothermal/Chemotherapy Anticancer Activity, ACS Appl. Mater. Interfaces, 10 (2018) 27631–27643.
[47] X. Han, X. Jing, D. Yang, H. Lin, Z. Wang, H. Ran, P. Li, Y. Chen, Therapeutic mesopore construction on 2D Nb
2C MXenes for targeted and enhanced chemo-photothermal cancer therapy in NIR-II biowindow, Theranostics, 8 (2018) 4491–4508.
[48] Y. Liu, Q. Han, W. Yang, X. Gan, Y. Yang, K. Xie, L. Xie, Y. Deng, Two-dimensional MXene/cobalt nanowire heterojunction for controlled drug delivery and chemo-photothermal therapy, Mater. Sci. Eng. C, 116 (2020) 111212.
[49] H. Liu, X. Xing, Y. Tan, H. Dong, Two-dimensional transition metal carbides and nitrides (MXenes) based biosensing and molecular imaging, Nanophotonics, 11 (2022) 4977–4993.
[50] H. Park, N. Kwon, G. Park, M. Jang, Y. Kwon, Y. Yoon, J. An, J. Min, T. Lee, Fast-response electrochemical biosensor based on a truncated aptamer and MXene heterolayer for West Nile virus detection in human serum, Bioelectrochem., 154 (2023) 108540.
[51] H. Cui, L. Yang, X. Fu, G. Li, S. Xing, X.-F. Wang, Ti
3C2 MXene-based aptasensor for sensitive and simultaneous detection of two diabetes biomarkers, Surf. Interfaces, 41 (2023) 103196.
[52] Z. Wang, Z. Zhang, Y. Zhang, X. Xu, T. Shen, H. Pan, D. Chang, MXenes-Au NPs modified electrochemical biosensor for multiple exosome surface proteins analysis, Talanta, 265 (2023) 124848.
[53] X. Su, Q. You, L. Zhuang, Z. Chang, M. Ge, L. Yang, W.-F. Dong, Bifunctional electrochemical biosensor based on PBMXene films for the real-time analysis and detection of living cancer cells, J. Pharm. Biomed. Anal., 234 (2023) 115479.
[54] S. Rajaie, M. Nasiri, A. Pasdar, M. Rezayi, M. Khazaei, B. Hatamluyi, The application of a DNA nanobiosensor based on
MXene/MWCNTs/PPY nanocomposite as a sensitive detection method of CEACAM5 for diagnosis of epithelial ovarian
cancer, Microchem. J., 193 (2023) 109016.
[55] S. Ranjbari, M. Rezayi, R. Arefinia, S.H. Aghaee-Bakhtiari, B. Hatamluyi, A. Pasdar, A novel electrochemical biosensor based on signal amplification of Au HFGNs/PnBA-MXene nanocomposite for the detection of miRNA-122 as a biomarker of breast cancer, Talanta, 255 (2023) 124247.
[56] B. Xu, C. Zhi, P. Shi, Latest advances in MXene biosensors, J. Phys. Mater., 3 (2020) 031001.
[57] M. Sadiq, L. Pang, M. Johnson, V. Sathish, Q. Zhang, D. Wang, 2D Nanomaterial, Ti3C2 MXene-Based Sensor to Guide
Lung Cancer Therapy and Management, Biosensors, 11 (2021) 40.
[58] W. Tang, Z. Dong, R. Zhang, X. Yi, K. Yang, M. Jin, C. Yuan, Z. Xiao, Z. Liu, L. Cheng, Multifunctional Two-Dimensional
Core–Shell MXene@Gold Nanocomposites for Enhanced Photo–Radio Combined Therapy in the Second Biological Window, ACS Nano, 13 (2019) 284–294.
[59] N. Talreja, M. Ashfaq, D. Chauhan, R.V. Mangalaraja, Cu-MXene: A potential biocide for the next-generation biomedical application, Mater. Chem. Phys., 294 (2023) 127029.
[60] K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi, K.A. Mahmoud, Antibacterial Activity of Ti3C2Tx MXene, ACS Nano,
10 (2016) 3674–3684.
[61] N. Dwivedi, C. Dhand, P. Kumar, A.K. Srivastava, Emergent 2D materials for combating infectious diseases: the potential of MXenes and MXene–graphene composites to fight against pandemics, Mater. Adv, 2 (2021) 2892-2905.
[62] M.A. Unal, F. Bayrakdar, L. Fusco, O. Besbinar, C.E. Shuck, S. Yalcin, M.T. Erken, A. Ozkul, C. Gurcan, O. Panatli, G.Y.
Summak, C. Gokce, M. Orecchioni, A. Gazzi, F. Vitale, J. Somers, E. Demir, S.S. Yildiz, H. Nazir, J.-C. Grivel, D. Bedognetti,
A. Crisanti, K.C. Akcali, Y. Gogotsi, L.G. Delogu, A. Yilmazer, 2D MXenes with antiviral and immunomodulatory properties:
A pilot study against SARS-CoV-2, Nano Today, 38 (2021) 101136.
[63] S. Iravani, R.S. Varma, MXene-based composites against antibiotic-resistant bacteria: current trends and future perspectives, RSC Adv., 13 (2023) 9665-9677.
[64] M. Khatami, P. Iravani, G. Jamalipour Soufi, S. Iravani, MXenes for antimicrobial and antiviral applications: recent advances, Mater. Tech., 37 (2022) 1890-1905.
[65] X. He, Y. Qian, C. Wu, J. Feng, X. Sun, Q. Zheng, X. Li, J. Shen, Entropy-Mediated High-Entropy MXenes Nanotherapeutics: NIR-II-Enhanced Intrinsic Oxidase Mimic Activity to Combat Methicillin-Resistant Staphylococcus Aureus Infection, Adv.Mater., 35 (2023) 2211432.
[66] J. Huang, J. Su, Z. Hou, J. Li, Z. Li, Z. Zhu, S. Liu, Z. Yang, X. Yin, G. Yu, Cytocompatibility of Ti3C2Tx MXene with Red
Blood Cells and Human Umbilical Vein Endothelial Cells and the Underlying Mechanisms, Chem. Res. Toxicol, 36 (2023)
347–359.
[67] W. Wu, H. Ge, L. Zhang, X. Lei, Y. Yang, Y. Fu, H. Feng, Evaluating the cytotoxicity of Ti3C2 MXene to neural stem cells,
Chem. res. toxicol., 33 (2020) 2953-2962.
[68] X. Chang, Q. Wu, Y. Wu, X. Xi, J. Cao, H. Chu, Q. Liu, Y. Li, W. Wu, X. Fang, Multifunctional Au Modified Ti3C2-MXene
for Photothermal/Enzyme Dynamic/Immune Synergistic Therapy, Nano Lett., 22 (2022) 8321-8330.
[69] X. Zhao, M. Radovic, M.J. Green, Synthesizing MXene Nanosheets by Water-free Etching, Chem, 6 (2020) 544-546.
[70] G. Deysher, C. Eugene Shuck, K. Hantanasirisakul, N.C. Frey, A.C. Foucher, K. Maleski, A. Sarycheva, V.B. Shenoy, E.A.
Stach, B. Anasori, Y. Gogotsi, Synthesis of Mo4VAlC4 MAX Phase and Two-Dimensional Mo4VC4 MXene with Five Atomic
Layers of Transition Metals, ACS Nano, 14 (2020) 204–217.
[71] U.U. Rahman, M. Humayun, U. Ghani, M. Usman, H. Ullah, A. Khan, N.M. El-Metwaly, A. Khan, MXenes as Emerging
Materials: Synthesis, Properties, and Applications, Molecules, 27 (2022) 15.
[72] Y. Chen, Z. Deng, R. Ouyang, R. Zheng, Z. Jiang, H. Bai, H. Xue, 3D printed stretchable smart fibers and textiles for selfpowered e-skin, Nano Energy, 84 (2021) 105866.