Development of Antibiotic Releasing Electrospun Nanofibrous Mats Based on Gelatin

Document Type : Original Article

Authors

1 Department of Chemical Engineering, Faculty of Engineering, University of Maragheh, Maragheh, 5518183111, Iran

2 Department of Mechanical Engineering, North Dakota State University, Fargo, ND 58108, United States

Abstract

This work aimed to prepare pH-sensitive nanofibrous mats as a drug releasing system using a green method. Gelatin nanofibers were first prepared by electrospinning and then cross-linked with glutaraldehyde. To evaluate the capability of this product as a drug delivery system, vancomycin was loaded into the nanofibrous mats in different doses as a model antibiotic drug. The chemical structure of the prepared material was investigated by (Fourier transform-infrared) FT-IR. Field emission scanning electron microscopy (FE-SEM) observations showed that uniform bead-free nanofibers with an average diameter of 157 nm were successfully fabricated. The drug release studies revealed that the relative rate of drug release in buffer media with pH =2.0 was higher than that in a buffer solution with pH =7.4. The drug release mechanism of samples was determined by Korsmir-Pepas model. Moreover, the incorporation of vancomycin into the nanofibers provided an effective antibacterial activity against Escherichia coli and Staphylococcus aureus microorganisms. The developed antibiotic loaded nanofibrous mats can be considered as a promising novel antimicrobial wound dressing material.

Graphical Abstract

Development of Antibiotic Releasing Electrospun Nanofibrous Mats Based on Gelatin

Keywords


 [1] G. Jiang, J. Zhang, D. Ji, X. Qin, Y. Ge, S. Xie, A novel approach for fabricating antibacterial nanofiber/cotton hybrid yarns, Fibers Polym., 18(5) (2017) 987-992.
[2] F. Kalalinia, Z. Taherzadeh, N. Jirofti, N. Amiri, N. Foroghinia, M. Beheshti, B.S.F. Bazzaz, M. Hashemi, A. Shahroodi, E.
Pishavar, Evaluation of wound healing efficiency of vancomycin-loaded electrospun chitosan/poly ethylene oxide nanofibers in full thickness wound model of rat, Int. J. Biol. Macromol., 177 (2021) 100-110.
[3] T. Garg, G. Rath, A.K. Goyal, Biomaterials-based nanofiber scaffold: targeted and controlled carrier for cell and drug delivery, J. Drug. Target., 23(3) (2015) 202-221.
[4] J.A. Wahab, G. Xu, H. Lee, P.D. Nam, K. Wei, S.H. Kim, I.S. Kim, Fabrication of silk fibroin/eggshell nanofiber membranes
for facemasks, Fibers Polym., 17(11) (2016) 1776-1781.
[5] H.S. Yoo, T.G. Kim, T.G. Park, Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery, Adv. Drug Deliv. Rev., 61(12) (2009) 1033-1042.
[6] A. Islam, T. Yasin, M.A. Rafiq, T.H. Shah, A. Sabir, S.M. Khan, T. Jamil, In-situ crosslinked nanofiber mats of chitosan/poly
(vinyl alcohol) blend: Fabrication, characterization and MTT assay with cancerous bone cells, Fibers Polym., 16(9) (2015)
1853-1860.
[7] M. Sadri, S. Arab-Sorkhi, H. Vatani, A. Bagheri-Pebdeni, New wound dressing polymeric nanofiber containing green tea extract prepared by electrospinning method, Fibers Polym., 16(8) (2015) 1742-1750.
[8] S.S. Qavamnia, L.R. Rad, M. Irani, Incorporation of hydroxyapatite/doxorubicin into the chitosan/polyvinyl
alcohol/polyurethane nanofibers for controlled release of doxurubicin and its anticancer property, Fibers Polym., 21(8) (2020) 1634-1642.
[9] F.F. Azhar, E. Shahbazpour, A. Olad, pH sensitive and controlled release system based on cellulose nanofibers-poly vinyl alcohol hydrogels for cisplatin delivery, Fibers Polym., 18(3) (2017) 416-423.
[10] S. Demirci, A. Celebioglu, Z. Aytac, T. Uyar, pH-responsive nanofibers with controlled drug release properties, Polym. Chem., 5(6) (2014) 2050-2056.
[11] L. Behbood, S. Karimi, E. Mirzaei, G. Mohammadi, M. Azami, E. Arkan, Mucoadhesive chitosan electrospun nanofibers
containing tetracycline and triamcinolone as a drug delivery system, Fibers Polym.,19(7) (2018) 1454-1462.
[12] L. Behbood, P. Moradipour, F. Moradi, E. Arkan, Mucoadhesive electrospun nanofibers of chitosan/gelatin containing
vancomycin as a delivery system, J. Rep. Pharm. Sci., 6(2) (2017) 150.
[13] G.D. Mogoşanu, A.M. Grumezescu, Natural and synthetic polymers for wounds and burns dressing, Int. J. Pharm., 463(2) (2014) 127-136.
[14] N. Okutan, P. Terzi, F. Altay, Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers, Food Hydrocoll., 39 (2014) 19-26.
[15] T.-H. Nguyen, B.-T. Lee, Fabrication and characterization of cross-linked gelatin electro-spun nano-fibers, J. Biomed. Sci. Eng. 3(12) (2010) 1117.
[16] Z. Aytac, S. Ipek, I. Erol, E. Durgun, T. Uyar, Fast-dissolving electrospun gelatin nanofibers encapsulating
ciprofloxacin/cyclodextrin inclusion complex, Colloids Surf. B, 178 (2019) 129-136.
[17] S. Panzavolta, M. Gioffrè, M.L. Focarete, C. Gualandi, L. Foroni, A. Bigi, Electrospun gelatin nanofibers: optimization of
genipin cross-linking to preserve fiber morphology after exposure to water, Acta biomater., 7(4) (2011) 1702-1709.
[18] E. Tavassoli-Kafrani, S.A.H. Goli, M. Fathi, Fabrication and characterization of electrospun gelatin nanofibers crosslinked with oxidized phenolic compounds, Int. J. Biol. Macromol., 103 (2017) 1062-1068.
[19] N. Shafagh, M. Sabzi, M.J. Afshari, Development of pH-sensitive and antibacterial gelatin/citric acid/Ag nanocomposite hydrogels with potential for biomedical applications, J. Polym. Res., 25(12) (2018) 1-8.
[20] Y. Zhang, J. Venugopal, Z.-M. Huang, C.T. Lim, S. Ramakrishna, Crosslinking of the electrospun gelatin nanofibers, Polymer 47(8) (2006) 2911-2917.
[21] J. Zhan, Y. Morsi, H. Ei-Hamshary, S.S. Al-Deyab, X. Mo, In vitro evaluation of electrospun gelatin–glutaraldehyde
nanofibers, Front. Mater. Sci., 10(1) (2016) 90-100.
22] W. Lu, M. Ma, H. Xu, B. Zhang, X. Cao, Y. Guo, Gelatin nanofibers prepared by spiral-electrospinning and cross-linked by vapor and liquid-phase glutaraldehyde, Mater. Lett., 140 (2015) 1-4.
[23] A. Laha, S. Yadav, S. Majumdar, C.S. Sharma, In-vitro release study of hydrophobic drug using electrospun cross-linked gelatin nanofibers, Biochem. Eng. J.,105 (2016) 481-488.
[24] A. Laha, C.S. Sharma, S. Majumdar, Sustained drug release from multi-layered sequentially crosslinked electrospun gelatin nanofiber mesh, Mater. Sci. Eng. C, 76 (2017) 782-786.
[25] H. Li, M. Wang, G.R. Williams, J. Wu, X. Sun, Y. Lv, L.-M. Zhu, Electrospun gelatin nanofibers loaded with vitamins A and E as antibacterial wound dressing materials, RSC Adv., 6(55) (2016) 50267-50277.
[26] L.C. Sow, H. Yang, Effects of salt and sugar addition on the physicochemical properties and nanostructure of fish gelatin, Food Hydrocoll., 45 (2015) 72-82.
[27] F. Davani, M. Alishahi, M. Sabzi, M. Khorram, A. Arastehfar, K. Zomorodian, Dual drug delivery of vancomycin and
imipenem/cilastatin by coaxial nanofibers for treatment of diabetic foot ulcer infections, Mater. Sci. Eng. C ,123 (2021) 111975.
[28] H. Chen, X. Xing, H. Tan, Y. Jia, T. Zhou, Y. Chen, Z. Ling, X. Hu, Covalently antibacterial alginate-chitosan hydrogel
dressing integrated gelatin microspheres containing tetracycline hydrochloride for wound healing, Mater. Sci. Eng. C, 70 (2017) 287-295.
[29] M. Zhang, Z. Li, L. Liu, Z. Sun, W. Ma, Z. Zhang, R. Zhang, D. Sun, Preparation and characterization of vancomycin-loaded electrospun Rana chensinensis skin collagen/poly (L-lactide) nanofibers for drug delivery, J. Nanomater., 2016 (2016).
[30] T. Gulsun, M. Inal, Y. Akdag, N. Izat, L. Oner, S. Sahin, The development and characterization of electrospun gelatin
nanofibers containing indomethacin and curcumin for accelerated wound healing, J. Drug Deliv. Sci. Technol., 67 (2022)
103000.
[31] G.R. Mahdavinia, A. Mosallanezhad, M. Soleymani, M. Sabzi, Magnetic-and pH-responsive κ-carrageenan/chitosan
complexes for controlled release of methotrexate anticancer drug, Int. J. Biol. Macromol., 97 (2017) 209-217.
[32] J. Karthika, B. Vishalakshi, pH responsive gels of Gellan Gum and Carboxymethyl cellulose: Matrix for Ketoprofen Delivery, Int. J. Chemtech Res., 6(2) (2014) 1055-1069