[1] F. Han, J. Wang, L. Ding, Y. Hu, W. Li, Z. Yuan, Q. Guo, C. Zhu, L. Yu, H. Wang, Z. Zhao, L. Jia, J. Li, Y. Yu,
W. Zhang, G. Chu, S. Chen, B. Li, Tissue Engineering and Regenerative Medicine: Achievements, Future, and
Sustainability in Asia, Front. Bioeng. Biotechnol. 8 (2020) 83.S.F. Badylak, R.M. Nerem, Progress in tissue
engineering and regenerative medicine, PNAS 107 (2010) 3285-3286.
[2] S.G. Alamdari, A. Alibakhshi, M. de la Guardia, B. Baradaran, R. Mohammadzadeh, M. Amini, P. Kesharwani,
A. Mokhtarzadeh, F. Oroojalian, A. Sahebkar, Conductive and Semiconductive Nanocomposite-Based Hydrogels
for Cardiac Tissue Engineering, Adv. Healthc. Mater. 11 (2022) e2200526.
[3] R. Balint, N.J. Cassidy, S.H. Cartmell, Conductive polymers: Towards a smart biomaterial for tissue engineering,
Acta Biomater. 10 (2014) 2341-2353.
[4] L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, H. Baharvand, S. Kiani, S.S. AlDeyab, S. Ramakrishna, Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue
engineering, J. Tissue Eng. Regen. Med. 5 (2011) e17-35.
[5] M.A. Khan, E. Cantù, S. Tonello, M. Serpelloni, N.F. Lopomo, E. Sardini, A Review on Biomaterials for 3D
Conductive Scaffolds for Stimulating and Monitoring Cellular Activities, Appl. Sci. 9 (2019) 961.
[6] B. Guo, P.X. Ma, Conducting Polymers for Tissue Engineering, Biomacromol. 19 (2018) 1764-1782.
[7] A.J. Heeger, A.G. MacDiarmid, H. Shirakawa, Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa,
Macromol. 35 (2002) 1137-1139.
[8] A.-D. Bendrea, L. Cianga, I. Cianga, Review paper: Progress in the Field of Conducting Polymers for Tissue
Engineering Applications, J. Biomater. Appl. 26 (2011) 3-84.
[9] D.D. Ateh, H.A. Navsaria, P. Vadgama, Polypyrrole-based conducting polymers and interactions with biological
tissues, J. R. Soc. Interface. 3 (2006) 741-752.
[10] Ö. Lalegül-Ülker, A.E. Elçin, Y.M. Elçin, Intrinsically Conductive Polymer Nanocomposites for Cellular
Applications, in: H.J. Chun, C.H. Park, I.K. Kwon, G. Khang (Eds.), Cutting-Edge Enabling Technologies for
Regenerative Medicine, Springer Singapore, Singapore, 2018, pp. 135-153.
[11] A.G. MacDiarmid, R.J. Mammone, R.B. Kaner, L. Porter, R. Pethig, A.J. Heeger, D.R. Rosseinsky, R.J. Gillespie,
P. Day, The concept of ‘doping’ of conducting polymers: the role of reduction potentials, Philosophical
Transactions of the Royal Society of London. Series A, Math. Phys. Sci. 314 (1985) 3-15.
[12] R. Kroon, A.I. Hofmann, L. Yu, A. Lund, C. Müller, Thermally Activated in Situ Doping Enables Solid-State
Processing of Conducting Polymers, Chem. Mater. 31 (2019) 2770-2777.
[13] N. K, C.S. Rout, Conducting polymers: a comprehensive review on recent advances in synthesis, properties and
applications, RSC Adv. 11 (2021) 5659-5697.
[14] I.-R. Jeon, N. Noma, R.F.C. Claridge, Y. Shirota, Electrochemical Doping of Poly(3-vinylperylene) and Electrical
Properties of Doped Polymers, Polym. J. 24 (1992) 273-279.
[15] S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline,
Prog. Polym. Sci. 34 (2009) 783-810.
[16] A.A. Syed, M.K. Dinesan, Polyaniline—A novel polymeric material, Talanta 38 (1991) 815-837.
[17] Z.A. Boeva, V.G. Sergeyev, Polyaniline: Synthesis, properties, and application, Polym. Sci. Ser. C. 56 (2014)
144-153.
[18] M. Ghovvati, L. Guo, K. Bolouri, N. Kaneko, Advances in Electroconductive Polymers for Biomedical Sector:
Structure and Properties, Mater. Chem. Horizons 2 (2023) 125-137.
[19] H. Baniasadi, A. Ramazani S.A, S. Mashayekhan, Fabrication and characterization of conductive
chitosan/gelatin-based scaffolds for nerve tissue engineering, International . Biol. Macromol. 74 (2015) 360-366.
[20] G. Street, S. Lindsey, A. Nazzal, K. Wynne, The structure and mechanical properties of polypyrrole, Mol. Cryst.
Liq. Cryst. 118 (1985) 137-148.
[21] S. Geetha, C.R. Rao, M. Vijayan, D. Trivedi, Biosensing and drug delivery by polypyrrole, Anal. Chim. Acta 568
(2006) 119-125.
[22] T.P. Kaloni, P.K. Giesbrecht, G. Schreckenbach, M.S. Freund, Polythiophene: From fundamental perspectives to
applications, Chem. Mater. 29 (2017) 10248-10283.
[23] G. Gebreyohannes, A. Nyerere, C. Bii, D.B. Sbhatu, Challenges of intervention, treatment, and antibiotic
resistance of biofilm-forming microorganisms, Heliyon 5 (2019) e02192.
[24] N.K. Palanisamy, N. Ferina, A.N. Amirulhusni, Z. Mohd-Zain, J. Hussaini, L.J. Ping, R. Durairaj, Antibiofilm
properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa, J.
Nanobiotechnol. 12 (2014) 2.
[25] M.M. Farouk, A. El-Molla, F.A. Salib, Y.A. Soliman, M. Shaalan, The Role of Silver Nanoparticles in a
Treatment Approach for Multidrug-Resistant Salmonella Species Isolates, Int. J. Nanomed. 15 (2020) 6993-7011.
[26] D.G. Meeker, S.V. Jenkins, E.K. Miller, K.E. Beenken, A.J. Loughran, A. Powless, T.J. Muldoon, E.I. Galanzha,
V.P. Zharov, M.S. Smeltzer, J. Chen, Synergistic Photothermal and Antibiotic Killing of Biofilm-Associated
Staphylococcus aureus Using Targeted Antibiotic-Loaded Gold Nanoconstructs, ACS Infect. Dis. 2 (2016) 241-
250.
[27] M. Mishra, S. Kumar, R.K. Majhi, L. Goswami, C. Goswami, H. Mohapatra, Antibacterial Efficacy of
Polysaccharide Capped Silver Nanoparticles Is Not Compromised by AcrAB-TolC Efflux Pump, Front.
Microbiol. 9 (2018).
[28] B.D. Chithrani, J. Stewart, C. Allen, D.A. Jaffray, Intracellular uptake, transport, and processing of nanostructures
in cancer cells, Nanomedicine: Nanotechnology, Biology Med. 5 (2009) 118-127.
[29] G. Sharma, D. Pathania, M. Naushad, N.C. Kothiyal, Fabrication, characterization and antimicrobial activity of
polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: Efficient removal of toxic metal ions from
water, Chem. Eng. J. 251 (2014) 413-421.
[30] U. Bogdanović, S. Dimitrijević, S.D. Škapin, M. Popović, Z. Rakočević, A. Leskovac, S. Petrović, M. Stoiljković,
V. Vodnik, Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity
and genotoxicity evaluation, Mater. Sci. Eng. C. 93 (2018) 49-60.
[31] V. Mazeiko, A. Kausaite-Minkstimiene, A. Ramanaviciene, Z. Balevicius, A. Ramanavicius, Gold nanoparticle
and conducting polymer-polyaniline-based nanocomposites for glucose biosensor design, Sens. Actuators B
Chem. 189 (2013) 187-193.
[32] X. Liang, M. Sun, L. Li, R. Qiao, K. Chen, Q. Xiao, F. Xu, Preparation and antibacterial activities of
polyaniline/Cu0.05Zn0.95O nanocomposites, Dalton Trans. 41 (2012) 2804-2811.
[33] E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, G. Perale, Progress in Conductive Polyaniline-Based
Nanocomposites for Biomedical Applications: A Review, J. Med. Chem. 63 (2020) 1-22.
[34] F. Song, W. Jie, T. Zhang, W. Li, Y. Jiang, L. Wan, W. Liu, X. Li, B. Liu, Room-temperature fabrication of a
three-dimensional reduced-graphene oxide/polypyrrole/hydroxyapatite composite scaffold for bone tissue
engineering, RSC Adv. 6 (2016) 92804-92812.
[35] M. Cabuk, Y. Alan, M. Yavuz, H.I. Unal, Synthesis, characterization and antimicrobial activity of biodegradable
conducting polypyrrole-graft-chitosan copolymer, Appl. Surf. Sci. 318 (2014) 168-175.
[36] N. Maráková, P. Humpolíček, V. Kašpárková, Z. Capáková, L. Martinková, P. Bober, M. Trchová, J. Stejskal,
Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or
polypyrrole, and with deposited silver nanoparticles, Appl. Surf. Sci. 396 (2017) 169-176.
[37] N. Salahuddin, A.A. Elbarbary, M.L. Salem, S. Elksass, Antimicrobial and antitumor activities of 1,2,4-
triazoles/polypyrrole chitosan core shell nanoparticles, J. Phys. Org. Chem. 30 (2017) e3702.
[38] H.-O. Kim, M. Yeom, J. Kim, A. Kukreja, W. Na, J. Choi, A. Kang, D. Yun, J.-W. Lim, D. Song, S. Haam,
Reactive Oxygen Species-Regulating Polymersome as an Antiviral Agent against Influenza Virus, Small 13
(2017) 1700818.
[39] J. Upadhyay, A. Kumar, B. Gogoi, A.K. Buragohain, Biocompatibility and antioxidant activity of polypyrrole
nanotubes, Synth. Met. 189 (2014) 119-125.
[40] K. Jomova, M. Valko, Advances in metal-induced oxidative stress and human disease, Toxicol. 283 (2011) 65-
87.
[41] F. Ahmadinejad, S. Geir Møller, M. Hashemzadeh-Chaleshtori, G. Bidkhori, M.-S. Jami, Molecular Mechanisms
behind Free Radical Scavengers Function against Oxidative Stress, Antioxidants 6 (2017) 51.
[42] D. Yim, D.-E. Lee, Y. So, C. Choi, W. Son, K. Jang, C.-S. Yang, J.-H. Kim, Sustainable Nanosheet Antioxidants
for Sepsis Therapy via Scavenging Intracellular Reactive Oxygen and Nitrogen Species, ACS Nano 14 (2020)
10324-10336.
[43] V. Hasantabar, M. Lakouraj, E. Nazarzadeh Zare, M. Mohseni, Synthesis, Characterization, and Biological
Properties of Novel Bioactive Poly(xanthoneamide-triazole-ethersulfone) and Its Multifunctional Nanocomposite
with Polyaniline, Adv. Polym. Technol. 36 (2015).
[44] M.R. Gizdavic-Nikolaidis, J.R. Bennett, S. Swift, A.J. Easteal, M. Ambrose, Broad spectrum antimicrobial
activity of functionalized polyanilines, Acta Biomater. 7 (2011) 4204-4209.
[45] M. Gizdavic-Nikolaidis, J. Travas-Sejdic, G.A. Bowmaker, R.P. Cooney, C. Thompson, P.A. Kilmartin, The
antioxidant activity of conducting polymers in biomedical applications, Curr. Appl. Phys. 4 (2004) 347-350.
[46] B. Bideau, J. Bras, N. Adoui, E. Loranger, C. Daneault, Polypyrrole/nanocellulose composite for food
preservation: Barrier and antioxidant characterization, Food Pack. Shelf Life. 12 (2017) 1-8.
[47] A. Naskar, K.-s. Kim, Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat
Bacterial Infections: Advantages and Limitations, Microorganisms 7 (2019) 356.
[48] H.A. Alhadlaq, M.J. Akhtar, M. Ahamed, Different cytotoxic and apoptotic responses of MCF-7 and HT1080
cells to MnO2 nanoparticles are based on similar mode of action, Toxicol. 411 (2019) 71-80.
[49] C. Wan, J. Li, Cellulose aerogels functionalized with polypyrrole and silver nanoparticles: In-situ synthesis,
characterization and antibacterial activity, Carbohyd. Polym. 146 (2016) 362-367.
[50] W. Huang, T. Leng, M. Gao, Q. Hu, L. Liu, H. Dou, Scalable dextran-polypyrrole nano-assemblies with
photothermal/photoacoustic dual capabilities and enhanced biocompatibility, Carbohyd. Polym. 241 (2020)
116224.
[51] Z. Capáková, K.A. Radaszkiewicz, U. Acharya, T.H. Truong, J. Pacherník, P. Bober, V. Kašpárková, J. Stejskal,
J. Pfleger, M. Lehocký, P. Humpolíček, The biocompatibility of polyaniline and polypyrrole, Mater. Sci. Eng. C.
113 (2020) 110986.
[52] J. Stejskal, M. Hajná, V. Kašpárková, P. Humpolíček, A. Zhigunov, M. Trchová, Purification of a conducting
polymer, polyaniline, for biomedical applications, Synth. Met. 195 (2014) 286-293.
[53] P. Humpolicek, V. Kasparkova, P. Saha, J. Stejskal, Biocompatibility of polyaniline, Synth. Met. 162 (2012) 722-
727.
[54] D.P. Bhattarai, S. Shrestha, B.K. Shrestha, C.H. Park, C.S. Kim, A controlled surface geometry of polyaniline
doped titania nanotubes biointerface for accelerating MC3T3-E1 cells growth in bone tissue engineering, Chem.
Eng. J. 350 (2018) 57-68.
[55] Y. Arteshi, A. Aghanejad, S. Davaran, Y. Omidi, Biocompatible and electroconductive polyaniline-based
biomaterials for electrical stimulation, Eur. Polym. J. 108 (2018) 150-170.
[56] P. Bober, B.A. Zasonska, P. Humpolíček, Z. Kuceková, M. Varga, D. Horák, V. Babayan, N. Kazantseva, J.
Prokeš, J. Stejskal, Polyaniline–maghemite based dispersion: Electrical, magnetic properties and their
cytotoxicity, Synth. Met. 214 (2016) 23-29.
[57] S.M. Bittner, J.L. Guo, A. Melchiorri, A.G. Mikos, Three-dimensional Printing of Multilayered Tissue
Engineering Scaffolds, Mater. Today (Kidlington) 21 (2018) 861-874.
[58] S. Vijayavenkataraman, S. Kannan, T. Cao, J.Y.H. Fuh, G. Sriram, W.F. Lu, 3D-Printed PCL/PPy Conductive
Scaffolds as Three-Dimensional Porous Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair, Front.
Bioeng. Biotechnol. 7 (2019).
[59] B. Ferrigno, R. Bordett, N. Duraisamy, J. Moskow, M.R. Arul, S. Rudraiah, S.P. Nukavarapu, A.T. Vella, S.G.
Kumbar, Bioactive polymeric materials and electrical stimulation strategies for musculoskeletal tissue repair and
regeneration, Bioact. Mater. 5 (2020) 468-485.
[60] A. Casella, A. Panitch, J.K. Leach, Endogenous Electric Signaling as a Blueprint for Conductive Materials in
Tissue Engineering, Bioelec. 3 (2021) 27-41.
[61] M.A. Marsudi, R.T. Ariski, A. Wibowo, G. Cooper, A. Barlian, R. Rachmantyo, P. Bartolo, Conductive
Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges
from Biomaterials and Manufacturing Perspectives, Int. J. Mol. Sci. 22 (2021).
[62] M.D. Ashton, P.A. Cooper, S. Municoy, M.F. Desimone, D. Cheneler, S.D. Shnyder, J.G. Hardy, Controlled
Bioactive Delivery Using Degradable Electroactive Polymers, Biomacromol. 23 (2022) 3031-3040.
[63] M. Masoud, M. Mehrnoush, V. Daryoosh, T. Lobat, Electroconductive Nanocomposite Scaffolds: A New
Strategy Into Tissue Engineering and Regenerative Medicine, in: E. Farzad (Ed.), Nanocomposites, IntechOpen,
Rijeka, 2012, p. Ch. 14.
[64] A.S. Buinov, E.R. Gafarova, E.A. Grebenik, K.N. Bardakova, B.C. Kholkhoev, N.N. Veryasova, P.V. Nikitin,
N.V. Kosheleva, B.S. Shavkuta, A.S. Kuryanova, V.F. Burdukovskii, P.S. Timashev, Fabrication of Conductive
Tissue Engineering Nanocomposite Films Based on Chitosan and Surfactant-Stabilized Graphene Dispersions,
Polym. 14 (2022) 3792.
[65] E. Mostafavi, D. Medina-Cruz, K. Kalantari, A. Taymoori, P. Soltantabar, T.J. Webster, Electroconductive
Nanobiomaterials for Tissue Engineering and Regenerative Medicine, Bioelec. 2 (2020) 120-149.
[66] L. Huang, X. Yang, L. Deng, D. Ying, A. Lu, L. Zhang, A. Yu, B. Duan, Biocompatible Chitin Hydrogel
Incorporated with PEDOT Nanoparticles for Peripheral Nerve Repair, ACS Appl. Mater. Interfaces 13 (2021)
16106-16117.
[67] B.S. Eftekhari, D. Song, P.A. Janmey, Electrical Stimulation of Human Mesenchymal Stem Cells on Conductive
Chitosan-Polyaniline Substrates Promotes Neural Priming, bioRxiv (2022) 2022.11.14.516447.
[68] L. Wang, J. Jiang, W. Hua, A. Darabi, X. Song, C. Song, W. Zhong, M.M. Xing, X. Qiu, Mussel‐inspired
conductive cryogel as cardiac tissue patch to repair myocardial infarction by migration of conductive
nanoparticles, Adv. Funct. Mater. 26 (2016) 4293-4305.
[69] M. Ghovvati, M. Kharaziha, R. Ardehali, N. Annabi, Recent Advances in Designing Electroconductive
Biomaterials for Cardiac Tissue Engineering, Adv. Healthc. Mater. 11 (2022) 2200055.
[70] J.G. Hardy, J.Y. Lee, C.E. Schmidt, Biomimetic conducting polymer-based tissue scaffolds, Curr. Opin.
Biotechnol. 24 (2013) 847-854.
[71] P. Hazelton, M. Ye, X. Chen, Introduction to Conducting Polymers, Electrically Conducting Polymers and Their
Composites for Tissue Engineering, ACS 2023, pp. 1-7.
[72] N. Peidavosi, M. Azami, N. Beheshtizadeh, A. Ramazani Saadatabadi, Piezoelectric conductive electrospun
nanocomposite PCL/Polyaniline/Barium Titanate scaffold for tissue engineering applications, Sci. Rep. 12 (2022)
20828.
[73] D.T. Dixon, C.T. Gomillion, 3D-Printed conductive polymeric scaffolds with direct current electrical stimulation
for enhanced bone regeneration, J. Biomed. Mater. Res. B Appl. Biomater. 111 (2023) 1351-1364.
[74] N. Fani, M. Hajinasrollah, M. Asghari Vostikolaee, M. Baghaban Eslaminejad, F. Mashhadiabbas, N. Tongas,
M. Rasoulianboroujeni, A. Yadegari, K. Ede, M. Tahriri, L. Tayebi, Influence of conductive PEDOT:PSS in a
hard tissue scaffold: In vitro and in vivo study, J. Bioact. Compat. Polym. 34 (2019) 436-441.
[75] C.Y. Wu, A.Z. Melaku, F.B. Ilhami, C.W. Chiu, C.C. Cheng, Conductive Supramolecular Polymer
Nanocomposites with Tunable Properties to Manipulate Cell Growth and Functions, Int. J. Mol. Sci. 23 (2022).
[76] Z. Feng, K.H. Adolfsson, Y. Xu, H. Fang, M. Hakkarainen, M. Wu, Carbon dot/polymer nanocomposites: From
green synthesis to energy, environmental and biomedical applications, Sustain. Mater. Technol. 29 (2021)
e00304.
[77] J. Huang, X. Hu, L. Lu, Z. Ye, Q. Zhang, Z. Luo, Electrical regulation of Schwann cells using conductive
polypyrrole/chitosan polymers, J. Biomed. Mater. Res. A 93 (2010) 164-174.
[78] A. Escobar, A. Serafin, M.R. Carvalho, M. Culebras, A. Cantarero, A. Beaucamp, R.L. Reis, J.M. Oliveira, M.N.
Collins, Electroconductive poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticle-loaded silk fibroin
biocomposite conduits for peripheral nerve regeneration, Adv. Compos. Hybrid Mater. 6 (2023) 118.
[79] L. Wang, Y. Wu, T. Hu, B. Guo, P.X. Ma, Electrospun conductive nanofibrous scaffolds for engineering cardiac
tissue and 3D bioactuators, Acta biomater. 59 (2017) 68-81.
[80] T.H. Qazi, R. Rai, D. Dippold, J.E. Roether, D.W. Schubert, E. Rosellini, N. Barbani, A.R. Boccaccini,
Development and characterization of novel electrically conductive PANI–PGS composites for cardiac tissue
engineering applications, Acta Biomater. 10 (2014) 2434-2445.
[81] Y. Liang, A. Mitriashkin, T.T. Lim, J.C. Goh, Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac
tissue engineering, Biomater. 276 (2021) 121008.
[82] B.S. Spearman, A.J. Hodge, J.L. Porter, J.G. Hardy, Z.D. Davis, T. Xu, X. Zhang, C.E. Schmidt, M.C. Hamilton,
E.A. Lipke, Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage
electrophysiological development of cardiac cells, Acta biomater. 28 (2015) 109-120.
[83] S.Y. Srinivasan, M. Cler, O. Zapata-Arteaga, B. Dörling, M. Campoy-Quiles, E. Martínez, E. Engel, S. PérezAmodio, A. Laromaine, Conductive Bacterial Nanocellulose-Polypyrrole Patches Promote Cardiomyocyte
Differentiation, ACS Appl. Bio Mater. 6 (2023) 2860-2874.
[84] X. Zhao, P. Li, B. Guo, P.X. Ma, Antibacterial and conductive injectable hydrogels based on quaternized chitosangraft-polyaniline/oxidized dextran for tissue engineering, Acta Biomater. 26 (2015) 236-248.
[85] M. Mohamadali, S. Irani, M. Soleimani, S. Hosseinzadeh, PANi/PAN copolymer as scaffolds for the muscle cell‐
like differentiation of mesenchymal stem cells, Polym. Adv. Technol. 28 (2017) 1078-1087.
[86] M.-C. Chen, Y.-C. Sun, Y.-H. Chen, Electrically conductive nanofibers with highly oriented structures and their
potential application in skeletal muscle tissue engineering, Acta Biomater. 9 (2013) 5562-5572.
[87] S. Ostrovidov, M. Ebrahimi, H. Bae, H.K. Nguyen, S. Salehi, S.B. Kim, A. Kumatani, T. Matsue, X. Shi, K.
Nakajima, Gelatin–polyaniline composite nanofibers enhanced excitation–contraction coupling system
maturation in myotubes, ACS Appl. Mater. Interfaces. 9 (2017) 42444-42458.
[88] L. Wang, Y. Wu, B. Guo, P.X. Ma, Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal
muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation, ACS nano 9 (2015) 9167-9179.
[89] S. Hosseinzadeh, M. Mahmoudifard, F. Mohamadyar-Toupkanlou, M. Dodel, A. Hajarizadeh, M. Adabi, M.
Soleimani, The nanofibrous PAN-PANi scaffold as an efficient substrate for skeletal muscle differentiation using
satellite cells, BioProcess Biosyst. Eng. 39 (2016) 1163-1172.
[90] M. Mahmoudifard, M. Soleimani, S. Hatamie, S. Zamanlui, P. Ranjbarvan, M. Vossoughi, S. Hosseinzadeh, The
different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide
nanosheets, Biomed. Mater. 11 (2016) 025006.
[91] F.V. Berti, P. Srisuk, L.P. da Silva, A.P. Marques, R.L. Reis, V.M. Correlo, Synthesis and characterization of
electroactive gellan gum spongy-like hydrogels for skeletal muscle tissue engineering applications, Tissue Eng.
A 23 (2017) 968-979.
[92] M. Sasaki, B.C. Karikkineth, K. Nagamine, H. Kaji, K. Torimitsu, M. Nishizawa, Highly conductive stretchable
and biocompatible electrode–hydrogel hybrids for advanced tissue engineering, Adv. Healthc. Mater. 3 (2014)
1919-1927.
[93] K.D. McKeon-Fischer, D.P. Browe, R.M. Olabisi, J.W. Freeman, Poly(3,4-ethylenedioxythiophene) nanoparticle
and poly(ɛ-caprolactone) electrospun scaffold characterization for skeletal muscle regeneration, J. Biomed.
Mater. Res. A 103 (2015) 3633-3641.
[94] A. Wibowo, C. Vyas, G. Cooper, F. Qulub, R. Suratman, A.I. Mahyuddin, T. Dirgantara, P. Bartolo, 3D Printing
of Polycaprolactone–Polyaniline Electroactive Scaffolds for Bone Tissue Engineering, Mater. 13 (2020) 512.
[95] A.I. Rezk, D.P. Bhattarai, J. Park, C.H. Park, C.S. Kim, Polyaniline-coated titanium oxide nanoparticles and
simvastatin-loaded poly(ε-caprolactone) composite nanofibers scaffold for bone tissue regeneration application,
Colloids Surf. B Biointerfaces 192 (2020) 111007.
[96] F. Ghorbani, B. Ghalandari, A.L. Khan, D. Li, A. Zamanian, B. Yu, Decoration of electrical conductive
polyurethane-polyaniline/polyvinyl alcohol matrixes with mussel-inspired polydopamine for bone tissue
engineering, Biotechnol. Prog. 36 (2020) e3043.
[97] P. Li, S. Zhang, K. Li, J. Wang, M. Liu, X. Gu, Y. Fan, The promoting effect on pre-osteoblast growth under
electrical and magnetic double stimulation based on PEDOT/Fe3O4/PLGA magnetic-conductive bi-functional
scaffolds, J. Mater. Chem. B 6 (2018) 4952-4962.
[98] B. Maharjan, V.K. Kaliannagounder, S.R. Jang, G.P. Awasthi, D.P. Bhattarai, G. Choukrani, C.H. Park, C.S.
Kim, In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive
scaffolds for bone tissue engineering, Mater. Sci. Eng. C. 114 (2020) 111056.