Harnessing the Power of Electroconductive Polymers for Breakthroughs in Tissue Engineering and Regenerative Medicine

Document Type : Review Article

Authors

1 Department of Radiological Sciences, David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095, USA

2 Department of Respiratory and Critical Care Medicine, NanoBioMedical Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China

3 Department of Science & Technology, Department of Urology, Nano Medical Innovation & Collaboration Group (NMICG), The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People’s Hospital, Quzhou, China

Abstract

Electroconductive polymers (ECPs) have garnered increasing attention in the realms of tissue engineering and regenerative medicine due to their unique physicochemical properties, including their ability to conduct electrical signals. These polymers, with inherent conductivity mirroring that of native tissues, present a promising platform for scaffolds that can modulate cell behavior and tissue formation through electrical stimulation. The biocompatibility, tunable conductivity, and topographical features of ECPs enhance cellular adhesion, proliferation, and differentiation. Furthermore, their electrical properties have been shown to augment nerve regeneration, cardiac tissue repair, and musculoskeletal tissue formation. Combined with other biomaterials or biological molecules, ECP-based composites exhibit synergistic effects, promoting enhanced tissue regeneration. Moreover, the integration of ECPs with cutting-edge technologies such as 3D printing and microfluidics propels the design of sophisticated constructs for tissue engineering applications. This paper concludes with the challenges faced in the clinical translation of ECP-based scaffolds and provides perspectives on the future trajectory of ECPs in regenerative medicine. The synthesis of ECPs with emerging biotechnologies has the potential to revolutionize treatments, bridging the gap between traditional regenerative approaches and sophisticated bioelectronic remedies

Graphical Abstract

Harnessing the Power of Electroconductive Polymers for Breakthroughs in Tissue Engineering and Regenerative Medicine

Keywords


 [1] F. Han, J. Wang, L. Ding, Y. Hu, W. Li, Z. Yuan, Q. Guo, C. Zhu, L. Yu, H. Wang, Z. Zhao, L. Jia, J. Li, Y. Yu,
W. Zhang, G. Chu, S. Chen, B. Li, Tissue Engineering and Regenerative Medicine: Achievements, Future, and
Sustainability in Asia, Front. Bioeng. Biotechnol. 8 (2020) 83.S.F. Badylak, R.M. Nerem, Progress in tissue
engineering and regenerative medicine, PNAS 107 (2010) 3285-3286.
[2] S.G. Alamdari, A. Alibakhshi, M. de la Guardia, B. Baradaran, R. Mohammadzadeh, M. Amini, P. Kesharwani,
A. Mokhtarzadeh, F. Oroojalian, A. Sahebkar, Conductive and Semiconductive Nanocomposite-Based Hydrogels
for Cardiac Tissue Engineering, Adv. Healthc. Mater. 11 (2022) e2200526.
[3] R. Balint, N.J. Cassidy, S.H. Cartmell, Conductive polymers: Towards a smart biomaterial for tissue engineering,
Acta Biomater. 10 (2014) 2341-2353.
[4] L. Ghasemi-Mobarakeh, M.P. Prabhakaran, M. Morshed, M.H. Nasr-Esfahani, H. Baharvand, S. Kiani, S.S. AlDeyab, S. Ramakrishna, Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue
engineering, J. Tissue Eng. Regen. Med. 5 (2011) e17-35.
[5] M.A. Khan, E. Cantù, S. Tonello, M. Serpelloni, N.F. Lopomo, E. Sardini, A Review on Biomaterials for 3D
Conductive Scaffolds for Stimulating and Monitoring Cellular Activities, Appl. Sci. 9 (2019) 961.
[6] B. Guo, P.X. Ma, Conducting Polymers for Tissue Engineering, Biomacromol. 19 (2018) 1764-1782.
[7] A.J. Heeger, A.G. MacDiarmid, H. Shirakawa, Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa,
Macromol. 35 (2002) 1137-1139.
[8] A.-D. Bendrea, L. Cianga, I. Cianga, Review paper: Progress in the Field of Conducting Polymers for Tissue
Engineering Applications, J. Biomater. Appl. 26 (2011) 3-84.
[9] D.D. Ateh, H.A. Navsaria, P. Vadgama, Polypyrrole-based conducting polymers and interactions with biological
tissues, J. R. Soc. Interface. 3 (2006) 741-752.
[10] Ö. Lalegül-Ülker, A.E. Elçin, Y.M. Elçin, Intrinsically Conductive Polymer Nanocomposites for Cellular
Applications, in: H.J. Chun, C.H. Park, I.K. Kwon, G. Khang (Eds.), Cutting-Edge Enabling Technologies for
Regenerative Medicine, Springer Singapore, Singapore, 2018, pp. 135-153.
[11] A.G. MacDiarmid, R.J. Mammone, R.B. Kaner, L. Porter, R. Pethig, A.J. Heeger, D.R. Rosseinsky, R.J. Gillespie,
P. Day, The concept of ‘doping’ of conducting polymers: the role of reduction potentials, Philosophical
Transactions of the Royal Society of London. Series A, Math. Phys. Sci. 314 (1985) 3-15.
[12] R. Kroon, A.I. Hofmann, L. Yu, A. Lund, C. Müller, Thermally Activated in Situ Doping Enables Solid-State
Processing of Conducting Polymers, Chem. Mater. 31 (2019) 2770-2777.
[13] N. K, C.S. Rout, Conducting polymers: a comprehensive review on recent advances in synthesis, properties and
applications, RSC Adv. 11 (2021) 5659-5697.
[14] I.-R. Jeon, N. Noma, R.F.C. Claridge, Y. Shirota, Electrochemical Doping of Poly(3-vinylperylene) and Electrical
Properties of Doped Polymers, Polym. J. 24 (1992) 273-279.
[15] S. Bhadra, D. Khastgir, N.K. Singha, J.H. Lee, Progress in preparation, processing and applications of polyaniline,
Prog. Polym. Sci. 34 (2009) 783-810.
[16] A.A. Syed, M.K. Dinesan, Polyaniline—A novel polymeric material, Talanta 38 (1991) 815-837.
[17] Z.A. Boeva, V.G. Sergeyev, Polyaniline: Synthesis, properties, and application, Polym. Sci. Ser. C. 56 (2014)
144-153.
[18] M. Ghovvati, L. Guo, K. Bolouri, N. Kaneko, Advances in Electroconductive Polymers for Biomedical Sector:
Structure and Properties, Mater. Chem. Horizons 2 (2023) 125-137.
[19] H. Baniasadi, A. Ramazani S.A, S. Mashayekhan, Fabrication and characterization of conductive
chitosan/gelatin-based scaffolds for nerve tissue engineering, International . Biol. Macromol. 74 (2015) 360-366.
[20] G. Street, S. Lindsey, A. Nazzal, K. Wynne, The structure and mechanical properties of polypyrrole, Mol. Cryst.
Liq. Cryst. 118 (1985) 137-148.
[21] S. Geetha, C.R. Rao, M. Vijayan, D. Trivedi, Biosensing and drug delivery by polypyrrole, Anal. Chim. Acta 568
(2006) 119-125.
[22] T.P. Kaloni, P.K. Giesbrecht, G. Schreckenbach, M.S. Freund, Polythiophene: From fundamental perspectives to
applications, Chem. Mater. 29 (2017) 10248-10283.
[23] G. Gebreyohannes, A. Nyerere, C. Bii, D.B. Sbhatu, Challenges of intervention, treatment, and antibiotic
resistance of biofilm-forming microorganisms, Heliyon 5 (2019) e02192.
[24] N.K. Palanisamy, N. Ferina, A.N. Amirulhusni, Z. Mohd-Zain, J. Hussaini, L.J. Ping, R. Durairaj, Antibiofilm
properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa, J.
Nanobiotechnol. 12 (2014) 2.
[25] M.M. Farouk, A. El-Molla, F.A. Salib, Y.A. Soliman, M. Shaalan, The Role of Silver Nanoparticles in a
Treatment Approach for Multidrug-Resistant Salmonella Species Isolates, Int. J. Nanomed. 15 (2020) 6993-7011.
[26] D.G. Meeker, S.V. Jenkins, E.K. Miller, K.E. Beenken, A.J. Loughran, A. Powless, T.J. Muldoon, E.I. Galanzha,
V.P. Zharov, M.S. Smeltzer, J. Chen, Synergistic Photothermal and Antibiotic Killing of Biofilm-Associated
Staphylococcus aureus Using Targeted Antibiotic-Loaded Gold Nanoconstructs, ACS Infect. Dis. 2 (2016) 241-
250.
[27] M. Mishra, S. Kumar, R.K. Majhi, L. Goswami, C. Goswami, H. Mohapatra, Antibacterial Efficacy of
Polysaccharide Capped Silver Nanoparticles Is Not Compromised by AcrAB-TolC Efflux Pump, Front.
Microbiol. 9 (2018).
[28] B.D. Chithrani, J. Stewart, C. Allen, D.A. Jaffray, Intracellular uptake, transport, and processing of nanostructures
in cancer cells, Nanomedicine: Nanotechnology, Biology Med. 5 (2009) 118-127.
[29] G. Sharma, D. Pathania, M. Naushad, N.C. Kothiyal, Fabrication, characterization and antimicrobial activity of
polyaniline Th(IV) tungstomolybdophosphate nanocomposite material: Efficient removal of toxic metal ions from
water, Chem. Eng. J. 251 (2014) 413-421.
[30] U. Bogdanović, S. Dimitrijević, S.D. Škapin, M. Popović, Z. Rakočević, A. Leskovac, S. Petrović, M. Stoiljković,
V. Vodnik, Copper-polyaniline nanocomposite: Role of physicochemical properties on the antimicrobial activity
and genotoxicity evaluation, Mater. Sci. Eng. C. 93 (2018) 49-60.
[31] V. Mazeiko, A. Kausaite-Minkstimiene, A. Ramanaviciene, Z. Balevicius, A. Ramanavicius, Gold nanoparticle
and conducting polymer-polyaniline-based nanocomposites for glucose biosensor design, Sens. Actuators B
Chem. 189 (2013) 187-193.
[32] X. Liang, M. Sun, L. Li, R. Qiao, K. Chen, Q. Xiao, F. Xu, Preparation and antibacterial activities of
polyaniline/Cu0.05Zn0.95O nanocomposites, Dalton Trans. 41 (2012) 2804-2811.
[33] E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, G. Perale, Progress in Conductive Polyaniline-Based
Nanocomposites for Biomedical Applications: A Review, J. Med. Chem. 63 (2020) 1-22. 
[34] F. Song, W. Jie, T. Zhang, W. Li, Y. Jiang, L. Wan, W. Liu, X. Li, B. Liu, Room-temperature fabrication of a
three-dimensional reduced-graphene oxide/polypyrrole/hydroxyapatite composite scaffold for bone tissue
engineering, RSC Adv. 6 (2016) 92804-92812.
[35] M. Cabuk, Y. Alan, M. Yavuz, H.I. Unal, Synthesis, characterization and antimicrobial activity of biodegradable
conducting polypyrrole-graft-chitosan copolymer, Appl. Surf. Sci. 318 (2014) 168-175.
[36] N. Maráková, P. Humpolíček, V. Kašpárková, Z. Capáková, L. Martinková, P. Bober, M. Trchová, J. Stejskal,
Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or
polypyrrole, and with deposited silver nanoparticles, Appl. Surf. Sci. 396 (2017) 169-176.
[37] N. Salahuddin, A.A. Elbarbary, M.L. Salem, S. Elksass, Antimicrobial and antitumor activities of 1,2,4-
triazoles/polypyrrole chitosan core shell nanoparticles, J. Phys. Org. Chem. 30 (2017) e3702.
[38] H.-O. Kim, M. Yeom, J. Kim, A. Kukreja, W. Na, J. Choi, A. Kang, D. Yun, J.-W. Lim, D. Song, S. Haam,
Reactive Oxygen Species-Regulating Polymersome as an Antiviral Agent against Influenza Virus, Small 13
(2017) 1700818.
[39] J. Upadhyay, A. Kumar, B. Gogoi, A.K. Buragohain, Biocompatibility and antioxidant activity of polypyrrole
nanotubes, Synth. Met. 189 (2014) 119-125.
[40] K. Jomova, M. Valko, Advances in metal-induced oxidative stress and human disease, Toxicol. 283 (2011) 65-
87.
[41] F. Ahmadinejad, S. Geir Møller, M. Hashemzadeh-Chaleshtori, G. Bidkhori, M.-S. Jami, Molecular Mechanisms
behind Free Radical Scavengers Function against Oxidative Stress, Antioxidants 6 (2017) 51.
[42] D. Yim, D.-E. Lee, Y. So, C. Choi, W. Son, K. Jang, C.-S. Yang, J.-H. Kim, Sustainable Nanosheet Antioxidants
for Sepsis Therapy via Scavenging Intracellular Reactive Oxygen and Nitrogen Species, ACS Nano 14 (2020)
10324-10336.
[43] V. Hasantabar, M. Lakouraj, E. Nazarzadeh Zare, M. Mohseni, Synthesis, Characterization, and Biological
Properties of Novel Bioactive Poly(xanthoneamide-triazole-ethersulfone) and Its Multifunctional Nanocomposite
with Polyaniline, Adv. Polym. Technol. 36 (2015).
[44] M.R. Gizdavic-Nikolaidis, J.R. Bennett, S. Swift, A.J. Easteal, M. Ambrose, Broad spectrum antimicrobial
activity of functionalized polyanilines, Acta Biomater. 7 (2011) 4204-4209.
[45] M. Gizdavic-Nikolaidis, J. Travas-Sejdic, G.A. Bowmaker, R.P. Cooney, C. Thompson, P.A. Kilmartin, The
antioxidant activity of conducting polymers in biomedical applications, Curr. Appl. Phys. 4 (2004) 347-350.
[46] B. Bideau, J. Bras, N. Adoui, E. Loranger, C. Daneault, Polypyrrole/nanocellulose composite for food
preservation: Barrier and antioxidant characterization, Food Pack. Shelf Life. 12 (2017) 1-8.
[47] A. Naskar, K.-s. Kim, Nanomaterials as Delivery Vehicles and Components of New Strategies to Combat
Bacterial Infections: Advantages and Limitations, Microorganisms 7 (2019) 356.
[48] H.A. Alhadlaq, M.J. Akhtar, M. Ahamed, Different cytotoxic and apoptotic responses of MCF-7 and HT1080
cells to MnO2 nanoparticles are based on similar mode of action, Toxicol. 411 (2019) 71-80.
[49] C. Wan, J. Li, Cellulose aerogels functionalized with polypyrrole and silver nanoparticles: In-situ synthesis,
characterization and antibacterial activity, Carbohyd. Polym. 146 (2016) 362-367.
[50] W. Huang, T. Leng, M. Gao, Q. Hu, L. Liu, H. Dou, Scalable dextran-polypyrrole nano-assemblies with
photothermal/photoacoustic dual capabilities and enhanced biocompatibility, Carbohyd. Polym. 241 (2020)
116224.
[51] Z. Capáková, K.A. Radaszkiewicz, U. Acharya, T.H. Truong, J. Pacherník, P. Bober, V. Kašpárková, J. Stejskal,
J. Pfleger, M. Lehocký, P. Humpolíček, The biocompatibility of polyaniline and polypyrrole, Mater. Sci. Eng. C.
113 (2020) 110986.
[52] J. Stejskal, M. Hajná, V. Kašpárková, P. Humpolíček, A. Zhigunov, M. Trchová, Purification of a conducting
polymer, polyaniline, for biomedical applications, Synth. Met. 195 (2014) 286-293.
[53] P. Humpolicek, V. Kasparkova, P. Saha, J. Stejskal, Biocompatibility of polyaniline, Synth. Met. 162 (2012) 722-
727.
[54] D.P. Bhattarai, S. Shrestha, B.K. Shrestha, C.H. Park, C.S. Kim, A controlled surface geometry of polyaniline
doped titania nanotubes biointerface for accelerating MC3T3-E1 cells growth in bone tissue engineering, Chem.
Eng. J. 350 (2018) 57-68.
[55] Y. Arteshi, A. Aghanejad, S. Davaran, Y. Omidi, Biocompatible and electroconductive polyaniline-based
biomaterials for electrical stimulation, Eur. Polym. J. 108 (2018) 150-170.
[56] P. Bober, B.A. Zasonska, P. Humpolíček, Z. Kuceková, M. Varga, D. Horák, V. Babayan, N. Kazantseva, J.
Prokeš, J. Stejskal, Polyaniline–maghemite based dispersion: Electrical, magnetic properties and their
cytotoxicity, Synth. Met. 214 (2016) 23-29.
[57] S.M. Bittner, J.L. Guo, A. Melchiorri, A.G. Mikos, Three-dimensional Printing of Multilayered Tissue
Engineering Scaffolds, Mater. Today (Kidlington) 21 (2018) 861-874.
[58] S. Vijayavenkataraman, S. Kannan, T. Cao, J.Y.H. Fuh, G. Sriram, W.F. Lu, 3D-Printed PCL/PPy Conductive
Scaffolds as Three-Dimensional Porous Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair, Front.
Bioeng. Biotechnol. 7 (2019).
[59] B. Ferrigno, R. Bordett, N. Duraisamy, J. Moskow, M.R. Arul, S. Rudraiah, S.P. Nukavarapu, A.T. Vella, S.G.
Kumbar, Bioactive polymeric materials and electrical stimulation strategies for musculoskeletal tissue repair and
regeneration, Bioact. Mater. 5 (2020) 468-485.
[60] A. Casella, A. Panitch, J.K. Leach, Endogenous Electric Signaling as a Blueprint for Conductive Materials in
Tissue Engineering, Bioelec. 3 (2021) 27-41.
[61] M.A. Marsudi, R.T. Ariski, A. Wibowo, G. Cooper, A. Barlian, R. Rachmantyo, P. Bartolo, Conductive
Polymeric-Based Electroactive Scaffolds for Tissue Engineering Applications: Current Progress and Challenges
from Biomaterials and Manufacturing Perspectives, Int. J. Mol. Sci. 22 (2021).
[62] M.D. Ashton, P.A. Cooper, S. Municoy, M.F. Desimone, D. Cheneler, S.D. Shnyder, J.G. Hardy, Controlled
Bioactive Delivery Using Degradable Electroactive Polymers, Biomacromol. 23 (2022) 3031-3040.
[63] M. Masoud, M. Mehrnoush, V. Daryoosh, T. Lobat, Electroconductive Nanocomposite Scaffolds: A New
Strategy Into Tissue Engineering and Regenerative Medicine, in: E. Farzad (Ed.), Nanocomposites, IntechOpen,
Rijeka, 2012, p. Ch. 14.
[64] A.S. Buinov, E.R. Gafarova, E.A. Grebenik, K.N. Bardakova, B.C. Kholkhoev, N.N. Veryasova, P.V. Nikitin,
N.V. Kosheleva, B.S. Shavkuta, A.S. Kuryanova, V.F. Burdukovskii, P.S. Timashev, Fabrication of Conductive
Tissue Engineering Nanocomposite Films Based on Chitosan and Surfactant-Stabilized Graphene Dispersions,
Polym. 14 (2022) 3792.
[65] E. Mostafavi, D. Medina-Cruz, K. Kalantari, A. Taymoori, P. Soltantabar, T.J. Webster, Electroconductive
Nanobiomaterials for Tissue Engineering and Regenerative Medicine, Bioelec. 2 (2020) 120-149.
[66] L. Huang, X. Yang, L. Deng, D. Ying, A. Lu, L. Zhang, A. Yu, B. Duan, Biocompatible Chitin Hydrogel
Incorporated with PEDOT Nanoparticles for Peripheral Nerve Repair, ACS Appl. Mater. Interfaces 13 (2021)
16106-16117.
[67] B.S. Eftekhari, D. Song, P.A. Janmey, Electrical Stimulation of Human Mesenchymal Stem Cells on Conductive
Chitosan-Polyaniline Substrates Promotes Neural Priming, bioRxiv (2022) 2022.11.14.516447.
[68] L. Wang, J. Jiang, W. Hua, A. Darabi, X. Song, C. Song, W. Zhong, M.M. Xing, X. Qiu, Mussel‐inspired
conductive cryogel as cardiac tissue patch to repair myocardial infarction by migration of conductive
nanoparticles, Adv. Funct. Mater. 26 (2016) 4293-4305.
[69] M. Ghovvati, M. Kharaziha, R. Ardehali, N. Annabi, Recent Advances in Designing Electroconductive
Biomaterials for Cardiac Tissue Engineering, Adv. Healthc. Mater. 11 (2022) 2200055.
[70] J.G. Hardy, J.Y. Lee, C.E. Schmidt, Biomimetic conducting polymer-based tissue scaffolds, Curr. Opin.
Biotechnol. 24 (2013) 847-854.
[71] P. Hazelton, M. Ye, X. Chen, Introduction to Conducting Polymers, Electrically Conducting Polymers and Their
Composites for Tissue Engineering, ACS 2023, pp. 1-7.
[72] N. Peidavosi, M. Azami, N. Beheshtizadeh, A. Ramazani Saadatabadi, Piezoelectric conductive electrospun
nanocomposite PCL/Polyaniline/Barium Titanate scaffold for tissue engineering applications, Sci. Rep. 12 (2022)
20828.
[73] D.T. Dixon, C.T. Gomillion, 3D-Printed conductive polymeric scaffolds with direct current electrical stimulation
for enhanced bone regeneration, J. Biomed. Mater. Res. B Appl. Biomater. 111 (2023) 1351-1364.
[74] N. Fani, M. Hajinasrollah, M. Asghari Vostikolaee, M. Baghaban Eslaminejad, F. Mashhadiabbas, N. Tongas,
M. Rasoulianboroujeni, A. Yadegari, K. Ede, M. Tahriri, L. Tayebi, Influence of conductive PEDOT:PSS in a
hard tissue scaffold: In vitro and in vivo study, J. Bioact. Compat. Polym. 34 (2019) 436-441.
[75] C.Y. Wu, A.Z. Melaku, F.B. Ilhami, C.W. Chiu, C.C. Cheng, Conductive Supramolecular Polymer
Nanocomposites with Tunable Properties to Manipulate Cell Growth and Functions, Int. J. Mol. Sci. 23 (2022).
[76] Z. Feng, K.H. Adolfsson, Y. Xu, H. Fang, M. Hakkarainen, M. Wu, Carbon dot/polymer nanocomposites: From
green synthesis to energy, environmental and biomedical applications, Sustain. Mater. Technol. 29 (2021)
e00304.
[77] J. Huang, X. Hu, L. Lu, Z. Ye, Q. Zhang, Z. Luo, Electrical regulation of Schwann cells using conductive
polypyrrole/chitosan polymers, J. Biomed. Mater. Res. A 93 (2010) 164-174.
[78] A. Escobar, A. Serafin, M.R. Carvalho, M. Culebras, A. Cantarero, A. Beaucamp, R.L. Reis, J.M. Oliveira, M.N.
Collins, Electroconductive poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticle-loaded silk fibroin
biocomposite conduits for peripheral nerve regeneration, Adv. Compos. Hybrid Mater. 6 (2023) 118.
[79] L. Wang, Y. Wu, T. Hu, B. Guo, P.X. Ma, Electrospun conductive nanofibrous scaffolds for engineering cardiac
tissue and 3D bioactuators, Acta biomater. 59 (2017) 68-81.
[80] T.H. Qazi, R. Rai, D. Dippold, J.E. Roether, D.W. Schubert, E. Rosellini, N. Barbani, A.R. Boccaccini,
Development and characterization of novel electrically conductive PANI–PGS composites for cardiac tissue
engineering applications, Acta Biomater. 10 (2014) 2434-2445.
[81] Y. Liang, A. Mitriashkin, T.T. Lim, J.C. Goh, Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac
tissue engineering, Biomater. 276 (2021) 121008.
[82] B.S. Spearman, A.J. Hodge, J.L. Porter, J.G. Hardy, Z.D. Davis, T. Xu, X. Zhang, C.E. Schmidt, M.C. Hamilton,
E.A. Lipke, Conductive interpenetrating networks of polypyrrole and polycaprolactone encourage
electrophysiological development of cardiac cells, Acta biomater. 28 (2015) 109-120.
[83] S.Y. Srinivasan, M. Cler, O. Zapata-Arteaga, B. Dörling, M. Campoy-Quiles, E. Martínez, E. Engel, S. PérezAmodio, A. Laromaine, Conductive Bacterial Nanocellulose-Polypyrrole Patches Promote Cardiomyocyte
Differentiation, ACS Appl. Bio Mater. 6 (2023) 2860-2874.
[84] X. Zhao, P. Li, B. Guo, P.X. Ma, Antibacterial and conductive injectable hydrogels based on quaternized chitosangraft-polyaniline/oxidized dextran for tissue engineering, Acta Biomater. 26 (2015) 236-248.
[85] M. Mohamadali, S. Irani, M. Soleimani, S. Hosseinzadeh, PANi/PAN copolymer as scaffolds for the muscle cell‐
like differentiation of mesenchymal stem cells, Polym. Adv. Technol. 28 (2017) 1078-1087.
[86] M.-C. Chen, Y.-C. Sun, Y.-H. Chen, Electrically conductive nanofibers with highly oriented structures and their
potential application in skeletal muscle tissue engineering, Acta Biomater. 9 (2013) 5562-5572.
[87] S. Ostrovidov, M. Ebrahimi, H. Bae, H.K. Nguyen, S. Salehi, S.B. Kim, A. Kumatani, T. Matsue, X. Shi, K.
Nakajima, Gelatin–polyaniline composite nanofibers enhanced excitation–contraction coupling system
maturation in myotubes, ACS Appl. Mater. Interfaces. 9 (2017) 42444-42458.
[88] L. Wang, Y. Wu, B. Guo, P.X. Ma, Nanofiber yarn/hydrogel core–shell scaffolds mimicking native skeletal
muscle tissue for guiding 3D myoblast alignment, elongation, and differentiation, ACS nano 9 (2015) 9167-9179.
[89] S. Hosseinzadeh, M. Mahmoudifard, F. Mohamadyar-Toupkanlou, M. Dodel, A. Hajarizadeh, M. Adabi, M.
Soleimani, The nanofibrous PAN-PANi scaffold as an efficient substrate for skeletal muscle differentiation using
satellite cells, BioProcess Biosyst. Eng. 39 (2016) 1163-1172.
[90] M. Mahmoudifard, M. Soleimani, S. Hatamie, S. Zamanlui, P. Ranjbarvan, M. Vossoughi, S. Hosseinzadeh, The
different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide
nanosheets, Biomed. Mater. 11 (2016) 025006.
[91] F.V. Berti, P. Srisuk, L.P. da Silva, A.P. Marques, R.L. Reis, V.M. Correlo, Synthesis and characterization of
electroactive gellan gum spongy-like hydrogels for skeletal muscle tissue engineering applications, Tissue Eng.
A 23 (2017) 968-979.
[92] M. Sasaki, B.C. Karikkineth, K. Nagamine, H. Kaji, K. Torimitsu, M. Nishizawa, Highly conductive stretchable
and biocompatible electrode–hydrogel hybrids for advanced tissue engineering, Adv. Healthc. Mater. 3 (2014)
1919-1927.
[93] K.D. McKeon-Fischer, D.P. Browe, R.M. Olabisi, J.W. Freeman, Poly(3,4-ethylenedioxythiophene) nanoparticle
and poly(ɛ-caprolactone) electrospun scaffold characterization for skeletal muscle regeneration, J. Biomed.
Mater. Res. A 103 (2015) 3633-3641.
[94] A. Wibowo, C. Vyas, G. Cooper, F. Qulub, R. Suratman, A.I. Mahyuddin, T. Dirgantara, P. Bartolo, 3D Printing
of Polycaprolactone–Polyaniline Electroactive Scaffolds for Bone Tissue Engineering, Mater. 13 (2020) 512.
[95] A.I. Rezk, D.P. Bhattarai, J. Park, C.H. Park, C.S. Kim, Polyaniline-coated titanium oxide nanoparticles and
simvastatin-loaded poly(ε-caprolactone) composite nanofibers scaffold for bone tissue regeneration application,
Colloids Surf. B Biointerfaces 192 (2020) 111007.
[96] F. Ghorbani, B. Ghalandari, A.L. Khan, D. Li, A. Zamanian, B. Yu, Decoration of electrical conductive
polyurethane-polyaniline/polyvinyl alcohol matrixes with mussel-inspired polydopamine for bone tissue
engineering, Biotechnol. Prog. 36 (2020) e3043.
[97] P. Li, S. Zhang, K. Li, J. Wang, M. Liu, X. Gu, Y. Fan, The promoting effect on pre-osteoblast growth under
electrical and magnetic double stimulation based on PEDOT/Fe
3O4/PLGA magnetic-conductive bi-functional
scaffolds, J. Mater. Chem. B 6 (2018) 4952-4962.
[98] B. Maharjan, V.K. Kaliannagounder, S.R. Jang, G.P. Awasthi, D.P. Bhattarai, G. Choukrani, C.H. Park, C.S.
Kim, In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive
scaffolds for bone tissue engineering, Mater. Sci. Eng. C. 114 (2020) 111056.