[1] K.-S. Huang, C.-H. Yang, S.-L. Huang, C.-Y. Chen, Y.-Y. Lu, Y.-S. Lin, Recent Advances in Antimicrobial Polymers: A Mini-Review, Int. J. Mol. Sci., 17 (2016) 1578.
[2] E.-R. Kenawy, S.D. Worley, R. Broughton, The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review, Biomacromolecules, 8 (2007) 1359-1384.
[3] M.R. Santos, A.C. Fonseca, P.V. Mendonça, R. Branco, A.C. Serra, P.V. Morais, J.F. Coelho, Recent developments in antimicrobial polymers: A review, J Materials, 9 (2016) 599.
[4] P. Pham, S. Oliver, C. Boyer, Design of Antimicrobial Polymers, Macromol. Chem. Phys. 224 (2023) 2200226.
[5] H.H.A.M. Hassan, A.F. Elhusseiny, A new antimicrobial PVC-based polymeric material incorporating bisacylthiourea complexes, BMC Chem. 17 (2023) 44.
[6] D. Ikkene, O.M. Eggenberger, C.-A. Schoenenberger, C.G. Palivan, Engineering antimicrobial surfaces by harnessing polymeric nanoassemblies, Curr. Opin. Colloid. Interface. 66 (2023) 101706.
[7] G.E. Yılmaz, I. Göktürk, M. Ovezova, F. Yılmaz, S. Kılıç, A. Denizli, Antimicrobial Nanomaterials: A Review, Hygiene, 2023, pp. 269-290.
[8] F. Carrouel, S. Viennot, L. Ottolenghi, C. Gaillard, D. Bourgeois, Nanoparticles as Anti-Microbial, Anti-Inflammatory, and Remineralizing Agents in Oral Care Cosmetics: A Review of the Current Situation, Nanomaterials, 10 (2020) 140.
[9] R. Jadhav, P. Pawar, V. Choudhari, N. Topare, S. Raut-Jadhav, S. Bokil, A. Khan, An overview of antimicrobial nanoparticles for food preservation, Mater. Today: Proceedings, 72 (2023) 204-216.
[10] R. Jamaledin, C.K.Y. Yiu, E.N. Zare, L.-N. Niu, R. Vecchione, G. Chen, Z. Gu, F.R. Tay, P. Makvandi, Advances in Antimicrobial Microneedle Patches for Combating Infections, Adv. Mater., 32 (2020) 2002129.
[11] A.B. Younis, Y. Haddad, L. Kosaristanova, K. Smerkova, Titanium dioxide nanoparticles: Recent progress in antimicrobial applications, WIREs Nanomed. Nanobio. 15 (2023) e1860.
[12] R. Hamed, S. Sawalha, M. Assali, R.A. Shqair, A. Al-Qadi, A. Hussein, R. Alkowni, S. Jodeh, Visible light-driven ZnO nanoparticles/carbon nanodots hybrid for broad-spectrum antimicrobial activity, Surf. Interfaces. 38 (2023) 102760.
[13] E.N. Zare, R. Jamaledin, P. Naserzadeh, E. Afjeh-Dana, B. Ashtari, M. Hosseinzadeh, R. Vecchione, A. Wu, F.R. Tay, A. Borzacchiello, P. Makvandi, Metal-Based Nanostructures/PLGA Nanocomposites: Antimicrobial Activity, Cytotoxicity, and Their Biomedical Applications, ACS Appl. Mater. Interfaces. 12 (2020) 3279-3300.
Materials Chemistry Horizons
Materials Chemistry Horizons | 2023, 2(3), 233-248 247
RESEARC
H
REVIEW
[14] F.V. Borbolla-Jiménez, S.I. Peña-Corona, S.J. Farah, M.T. Jiménez-Valdés, E. Pineda-Pérez, A. Romero-Montero, M.L. Del Prado-Audelo, S.A. Bernal-Chávez, J.J. Magaña, G. Leyva-Gómez, Films for Wound Healing Fabricated Using a Solvent Casting Technique, Pharmaceutics, 2023, pp. 1914.
[15] U. Siemann, Solvent cast technology–a versatile tool for thin film production, in: N. Stribeck, B. Smarsly (Eds.) Scattering Methods and the Properties of Polymer Materials, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 1-14.
[16] E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, G. Perale, Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review, J. Med. Chem. 63 (2020) 1-22.
[17] P. Dong, R. Prasanth, F. Xu, X. Wang, B. Li, R. Shankar, Eco-friendly Polymer Nanocomposite—Properties and Processing, in: V.K. Thakur, M.K. Thakur (Eds.) Eco-friendly Polymer Nanocomposites: Processing and Properties, Springer India, New Delhi, 2015, pp. 1-15.
[18] Y. Tong, Y. Wei, H. Zhang, L. Wang, L. Li, F. Xiao, C. Gao, G. Zhu, Fabrication of polyamide thin film nanocomposite membranes with enhanced desalination performance modified by silica nanoparticles formed in-situ polymerization of tetramethoxysilane, J. Environ. Chem. Eng. 11 (2023) 109415.
[19] W.S. Khan, R. Asmatulu, M. Ceylan, A. Jabbarnia, Recent progress on conventional and non-conventional electrospinning processes, Fibers Polym. 14 (2013) 1235-1247.
[20] C.J. Angammana, S.H. Jayaram, Fundamentals of electrospinning and processing technologies, Part. Sci. Technol. 34 (2016) 72-82.
[21] P.C. Caracciolo, G.A. Abraham, E.S. Battaglia, S. Bongiovanni Abel, Recent Progress and Trends in the Development of Electrospun and 3D Printed Polymeric-Based Materials to Overcome Antimicrobial Resistance (AMR), Pharmaceutics, 2023.
[22] H. Lv, Y. Liu, Y. Bai, H. Shi, W. Zhou, Y. Chen, Y. Liu, D.-G. Yu, Recent Combinations of Electrospinning with Photocatalytic Technology for Treating Polluted Water, Catalysts, 2023, pp. 758.
[23] S. Kalluri, K.H. Seng, Z. Guo, H.K. Liu, S.X. Dou, Electrospun lithium metal oxide cathode materials for lithium-ion batteries, RSC Adv. 3 (2013) 25576-25601.
[24] E.N. Zare, T. Agarwal, A. Zarepour, F. Pinelli, A. Zarrabi, F. Rossi, M. Ashrafizadeh, A. Maleki, M.-A. Shahbazi, T.K. Maiti, R.S. Varma, F.R. Tay, M.R. Hamblin, V. Mattoli, P. Makvandi, Electroconductive multi-functional polypyrrole composites for biomedical applications, Appl. Mater. Today, 24 (2021) 101117.
[25] A.A. Kotp, A.A. Farghali, R.M. Amin, S.A. bdel Moaty, A.G. El-Deen, Y.M. Gadelhak, f.A. El-Ela, H.A. Younes, S.M. Syame, R.K. Mahmoud, Green-synthesis of Ag nanoparticles and its composite with PVA nanofiber as a promising Cd2+ adsorbent and antimicrobial agent, J. Environ. Chem. Eng. 7 (2019) 102977.
[26] M. Mohammadian, R. Sahraei, M. Ghaemy, Synthesis and fabrication of antibacterial hydrogel beads based on modified-gum tragacanth/poly(vinyl alcohol)/Ag0 highly efficient sorbent for hard water softening, Chemosphere, 225 (2019) 259-269.
[27] M.H. Abu Elella, E.S. Goda, H.M. Abdallah, A.E. Shalan, H. Gamal, K.R. Yoon, Innovative bactericidal adsorbents containing modified xanthan gum/montmorillonite nanocomposites for wastewater treatment, Int. J. Biol. Macromol. 167 (2021) 1113-1125.
[28] M.H. Abu Elella, E.S. Goda, H. Gamal, S.M. El-Bahy, M.A. Nour, K.R. Yoon, Green antimicrobial adsorbent containing grafted xanthan gum/SiO2 nanocomposites for malachite green dye, Int. J. Biol. Macromol.191 (2021) 385-395.
[29] A. Foroughnia, A.D. Khalaji, E. Kolvari, N. Koukabi, Synthesis of new chitosan Schiff base and its Fe2O3 nanocomposite: Evaluation of methyl orange removal and antibacterial activity, Int. J. Biol. Macromol. 177 (2021) 83-91.
[30] M. Naushad, T. Ahamad, K.M. Al-Sheetan, Development of a polymeric nanocomposite as a high performance adsorbent for Pb(II) removal from water medium: Equilibrium, kinetic and antimicrobial activity, J. Hazard. Mater. 407 (2021) 124816.
[31] H. Ali, T.M. Tiama, A.M. Ismail, New and efficient NiO/chitosan/polyvinyl alcohol nanocomposites as antibacterial and dye adsorptive films, Int. J. Biol. Macromol. 186 (2021) 278-288.
[32] A.M. Youssef, M.E. El-Naggar, F.M. Malhat, H.M. El Sharkawi, Efficient removal of pesticides and heavy metals from wastewater and the antimicrobial activity of f-MWCNTs/PVA nanocomposite film, J. Clean. Prod. 206 (2019) 315-325.
[33] S. Ahmad Bhat, F. Zafar, A. Ullah Mirza, A. Hossain Mondal, A. Kareem, Q. Mohd. Rizwanul Haq, N. Nishat, NiO nanoparticle doped-PVA-MF polymer nanocomposites: Preparation, Congo red dye adsorption and antibacterial activity, Arab. J. Chem. 13 (2020) 5724-5739.
[34] E. Zong, C. Wang, J. Yang, H. Zhu, S. Jiang, X. Liu, P. Song, Preparation of TiO2/cellulose nanocomposites as antibacterial bio-adsorbents for effective phosphate removal from aqueous medium, Int. J. Biol. Macromol.182 (2021) 434-444.
[35] M.F. Hamza, A. Fouda, K.Z. Elwakeel, Y. Wei, E. Guibal, N.A. Hamad, Phosphorylation of Guar Gum/Magnetite/Chitosan Nanocomposites for Uranium (VI) Sorption and Antibacterial Applications, Molecules, 2021, pp. 1920.
[36] S. Nehra, A. Dhillon, D. Kumar, Freeze–dried synthesized bifunctional biopolymer nanocomposite for efficient fluoride removal and antibacterial activity, J. Environ. Sci. 94 (2020) 52-63.
[37] E.K. Radwan, M.E. El-Naggar, A. Abdel-Karim, A.R. Wassel, Multifunctional 3D cationic starch/nanofibrillated cellulose/silver nanoparticles nanocomposite cryogel: Synthesis, adsorption, and antibacterial characteristics, Int. J. Biol. Macromol.189 (2021) 420-431.
[38] S. Rasool, M. Imran, A. Haider, A. Shahzadi, W. Nabgan, I. Shahzadi, F. Medina, M.M. Algaradah, A.M. Fouda, A. Al-Shanini, M. Ikram, Efficient Dye Degradation and Antibacterial Activity of Carbon Dots/Chitosan-Doped La2O3 Nanorods: In Silico Molecular Docking Analysis, ACS Omega, 8 (2023) 25401-25409.
[39] T. Kamal, Y. Anwar, S.B. Khan, M.T.S. Chani, A.M. Asiri, Dye adsorption and bactericidal properties of TiO2/chitosan coating layer, Carbohydr. Polym. 148 (2016) 153-160.
[40] S.B. Khan, F. Ali, T. Kamal, Y. Anwar, A.M. Asiri, J. Seo, CuO embedded chitosan spheres as antibacterial adsorbent for dyes, Int. J. Biol. Macromol. 88 (2016) 113-119.
[41] S.A. Khan, S.B. Khan, T. Kamal, M. Yasir, A.M. Asiri, Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes, Int. J. Biol. Macromol. 91 (2016) 744-751.
[42] M. Zendehdel, A. Zendehnam, F. Hoseini, M. Azarkish, Investigation of removal of chemical oxygen demand (COD) wastewater and antibacterial activity of nanosilver incorporated in poly (acrylamide-co-acrylic acid)/NaY zeolite nanocomposite, Polym. Bull. 72 (2015) 1281-1300.
[43] M.N. Thorat, A. Jagtap, S.G. Dastager, Fabrication of bacterial nanocellulose/polyethyleneimine (PEI-BC) based cationic adsorbent for efficient removal of anionic dyes, J. Polym. Res. 28 (2021) 354.
[44] J.K. Sahoo, S.K. Paikra, M. Mishra, H. Sahoo, Amine functionalized magnetic iron oxide nanoparticles: Synthesis, antibacterial activity and rapid removal of Congo red dye, J. Mol. Liq. 282 (2019) 428-440.
[45] L. Li, J. Iqbal, Y. Zhu, P. Zhang, W. Chen, A. Bhatnagar, Y. Du, Chitosan/Ag-hydroxyapatite nanocomposite beads as a potential adsorbent for the efficient removal of toxic aquatic pollutants, Int. J. Biol. Macromol. 120 (2018) 1752-1759.
[46] M.S.S. Dorraji, H.R. Ashjari, M.H. Rasoulifard, M. Rastgouy-Houjaghan, Polyurethane foam-cadmium sulfide nanocomposite with open cell structure: Dye removal and antibacterial applications, Korean J. Chem. Eng. 34 (2017) 547-554.
[47] Y. Anwar, Antibacterial and lead ions adsorption characteristics of chitosan-manganese dioxide bionanocomposite, Int. J. Biol. Macromol. 111 (2018) 1140-1145.
[48] N.Z. Pourbaghaei, M. Anbia, F. Rahimi, Fabrication of Nano Zero valent Iron/Biopolymer Composite with Antibacterial Properties for Simultaneous Removal of Nitrate and Humic Acid: Kinetics and Isotherm Studies, J. Polym. Environ. 30 (2022) 907-924.
[49] D. Pathania, R. Katwal, G. Sharma, M. Naushad, M.R. Khan, A.a.H. Al-Muhtaseb, Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye, Int. J. Biol. Macromol. 87 (2016) 366-374.
[50] K. Shweta, H. Jha, Synthesis and characterization of crystalline carboxymethylated lignin–TEOS nanocomposites for metal adsorption and antibacterial activity, Bioresour. Bioprocess. 3 (2016) 31.
[51] B.S. Rathore, G. Sharma, D. Pathania, V.K. Gupta, Synthesis, characterization and antibacterial activity of cellulose acetate–tin (IV) phosphate nanocomposite, Carbohydr. Polym. 103 (2014) 221-227.
[52] Y. Jiang, J.-L. Gong, G.-M. Zeng, X.-M. Ou, Y.-N. Chang, C.-H. Deng, J. Zhang, H.-Y. Liu, S.-Y. Huang, Magnetic chitosan–graphene oxide composite for anti-microbial and dye removal applications, Int. J. Biol. Macromol. 82 (2016) 702-710.
[53] A.M. Atta, H.A. Al-Lohedan, A.O. Ezzat, A.M. Tawfik, A.I. Hashem, Synthesis of zinc oxide nanocomposites using poly (ionic liquids) based on quaternary ammonium acrylamidomethyl propane sulfonate for water treatment, J. Mol. Liq. 236 (2017) 38-47.
[54] M. Naushad, T. Ahamad, G. Sharma, A.a.H. Al-Muhtaseb, A.B. Albadarin, M.M. Alam, Z.A. Alothman, S.M. Alshehri, A.A. Ghfar, Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion, Chem. Eng. J. 300 (2016) 306-316.
[55] M. Liu, X. Zhang, Z. Li, L. Qu, R. Han, Fabrication of zirconium (IV)-loaded chitosan/Fe3O4/graphene oxide for efficient removal of alizarin red from aqueous solution, Carbohydr. Polym. 248 (2020) 116792.