Antimicrobial Polymer-Based Nanocomposites for Pollutants Removal

Document Type : Review Article

Authors

1 Department of Physics, Faculty of Science, Hakim Sabzevari University, P. O. Box 397, Sabzevar, Iran

2 Department of Chemistry, Faculty of Science, Hakim Sabzevari University, P. O. Box 397, Sabzevar, Iran

Abstract

Polymer-based antimicrobial nanocomposite adsorbents have emerged as promising materials for water purification due to their unique properties, including high surface area, low cost, abundance, and ease of interaction with contaminants. These materials can be prepared using a variety of methods, including solvent casting, in situ polymerization, and electrospinning. The application of polymer-based antimicrobial nanocomposite adsorbents in water purification has been widely reported in the literature, with promising results for the removal of a wide range of pollutants, including heavy metals, organic dyes, and bacteria. This review manuscript aims to provide a comprehensive overview of polymer-based antimicrobial nanocomposite adsorbents for water purification. The review will begin with a discussion of the different types of polymer-based antimicrobial nanocomposites and the methods used to prepare them. The next section will review the application of these materials in water purification, with specific examples of their use to remove various pollutants. Finally, the review will conclude with a discussion of the challenges and opportunities for the future development of polymer-based antimicrobial nanocomposite adsorbents for water purification. This review will be of interest to researchers and practitioners in the field of water purification, as well as those working on the development of new materials for environmental remediation.

Graphical Abstract

Antimicrobial Polymer-Based Nanocomposites for Pollutants Removal

Keywords


[1] K.-S. Huang, C.-H. Yang, S.-L. Huang, C.-Y. Chen, Y.-Y. Lu, Y.-S. Lin, Recent Advances in Antimicrobial Polymers: A Mini-Review, Int. J. Mol. Sci., 17 (2016) 1578.
[2] E.-R. Kenawy, S.D. Worley, R. Broughton, The Chemistry and Applications of Antimicrobial Polymers: A State-of-the-Art Review, Biomacromolecules, 8 (2007) 1359-1384.
[3] M.R. Santos, A.C. Fonseca, P.V. Mendonça, R. Branco, A.C. Serra, P.V. Morais, J.F. Coelho, Recent developments in antimicrobial polymers: A review, J Materials, 9 (2016) 599.
[4] P. Pham, S. Oliver, C. Boyer, Design of Antimicrobial Polymers, Macromol. Chem. Phys. 224 (2023) 2200226.
[5] H.H.A.M. Hassan, A.F. Elhusseiny, A new antimicrobial PVC-based polymeric material incorporating bisacylthiourea complexes, BMC Chem. 17 (2023) 44.
[6] D. Ikkene, O.M. Eggenberger, C.-A. Schoenenberger, C.G. Palivan, Engineering antimicrobial surfaces by harnessing polymeric nanoassemblies, Curr. Opin. Colloid. Interface. 66 (2023) 101706.
[7] G.E. Yılmaz, I. Göktürk, M. Ovezova, F. Yılmaz, S. Kılıç, A. Denizli, Antimicrobial Nanomaterials: A Review, Hygiene, 2023, pp. 269-290.
[8] F. Carrouel, S. Viennot, L. Ottolenghi, C. Gaillard, D. Bourgeois, Nanoparticles as Anti-Microbial, Anti-Inflammatory, and Remineralizing Agents in Oral Care Cosmetics: A Review of the Current Situation, Nanomaterials, 10 (2020) 140.
[9] R. Jadhav, P. Pawar, V. Choudhari, N. Topare, S. Raut-Jadhav, S. Bokil, A. Khan, An overview of antimicrobial nanoparticles for food preservation, Mater. Today: Proceedings, 72 (2023) 204-216.
[10] R. Jamaledin, C.K.Y. Yiu, E.N. Zare, L.-N. Niu, R. Vecchione, G. Chen, Z. Gu, F.R. Tay, P. Makvandi, Advances in Antimicrobial Microneedle Patches for Combating Infections, Adv. Mater., 32 (2020) 2002129.
[11] A.B. Younis, Y. Haddad, L. Kosaristanova, K. Smerkova, Titanium dioxide nanoparticles: Recent progress in antimicrobial applications, WIREs Nanomed. Nanobio. 15 (2023) e1860.
[12] R. Hamed, S. Sawalha, M. Assali, R.A. Shqair, A. Al-Qadi, A. Hussein, R. Alkowni, S. Jodeh, Visible light-driven ZnO nanoparticles/carbon nanodots hybrid for broad-spectrum antimicrobial activity, Surf. Interfaces. 38 (2023) 102760.
[13] E.N. Zare, R. Jamaledin, P. Naserzadeh, E. Afjeh-Dana, B. Ashtari, M. Hosseinzadeh, R. Vecchione, A. Wu, F.R. Tay, A. Borzacchiello, P. Makvandi, Metal-Based Nanostructures/PLGA Nanocomposites: Antimicrobial Activity, Cytotoxicity, and Their Biomedical Applications, ACS Appl. Mater. Interfaces. 12 (2020) 3279-3300.
Materials Chemistry Horizons
Materials Chemistry Horizons | 2023, 2(3), 233-248 247
RESEARC
H
REVIEW
[14] F.V. Borbolla-Jiménez, S.I. Peña-Corona, S.J. Farah, M.T. Jiménez-Valdés, E. Pineda-Pérez, A. Romero-Montero, M.L. Del Prado-Audelo, S.A. Bernal-Chávez, J.J. Magaña, G. Leyva-Gómez, Films for Wound Healing Fabricated Using a Solvent Casting Technique, Pharmaceutics, 2023, pp. 1914.
[15] U. Siemann, Solvent cast technology–a versatile tool for thin film production, in: N. Stribeck, B. Smarsly (Eds.) Scattering Methods and the Properties of Polymer Materials, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 1-14.
[16] E.N. Zare, P. Makvandi, B. Ashtari, F. Rossi, A. Motahari, G. Perale, Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review, J. Med. Chem. 63 (2020) 1-22.
[17] P. Dong, R. Prasanth, F. Xu, X. Wang, B. Li, R. Shankar, Eco-friendly Polymer Nanocomposite—Properties and Processing, in: V.K. Thakur, M.K. Thakur (Eds.) Eco-friendly Polymer Nanocomposites: Processing and Properties, Springer India, New Delhi, 2015, pp. 1-15.
[18] Y. Tong, Y. Wei, H. Zhang, L. Wang, L. Li, F. Xiao, C. Gao, G. Zhu, Fabrication of polyamide thin film nanocomposite membranes with enhanced desalination performance modified by silica nanoparticles formed in-situ polymerization of tetramethoxysilane, J. Environ. Chem. Eng. 11 (2023) 109415.
[19] W.S. Khan, R. Asmatulu, M. Ceylan, A. Jabbarnia, Recent progress on conventional and non-conventional electrospinning processes, Fibers Polym. 14 (2013) 1235-1247.
[20] C.J. Angammana, S.H. Jayaram, Fundamentals of electrospinning and processing technologies, Part. Sci. Technol. 34 (2016) 72-82.
[21] P.C. Caracciolo, G.A. Abraham, E.S. Battaglia, S. Bongiovanni Abel, Recent Progress and Trends in the Development of Electrospun and 3D Printed Polymeric-Based Materials to Overcome Antimicrobial Resistance (AMR), Pharmaceutics, 2023.
[22] H. Lv, Y. Liu, Y. Bai, H. Shi, W. Zhou, Y. Chen, Y. Liu, D.-G. Yu, Recent Combinations of Electrospinning with Photocatalytic Technology for Treating Polluted Water, Catalysts, 2023, pp. 758.
[23] S. Kalluri, K.H. Seng, Z. Guo, H.K. Liu, S.X. Dou, Electrospun lithium metal oxide cathode materials for lithium-ion batteries, RSC Adv. 3 (2013) 25576-25601.
[24] E.N. Zare, T. Agarwal, A. Zarepour, F. Pinelli, A. Zarrabi, F. Rossi, M. Ashrafizadeh, A. Maleki, M.-A. Shahbazi, T.K. Maiti, R.S. Varma, F.R. Tay, M.R. Hamblin, V. Mattoli, P. Makvandi, Electroconductive multi-functional polypyrrole composites for biomedical applications, Appl. Mater. Today, 24 (2021) 101117.
[25] A.A. Kotp, A.A. Farghali, R.M. Amin, S.A. bdel Moaty, A.G. El-Deen, Y.M. Gadelhak, f.A. El-Ela, H.A. Younes, S.M. Syame, R.K. Mahmoud, Green-synthesis of Ag nanoparticles and its composite with PVA nanofiber as a promising Cd2+ adsorbent and antimicrobial agent, J. Environ. Chem. Eng. 7 (2019) 102977.
[26] M. Mohammadian, R. Sahraei, M. Ghaemy, Synthesis and fabrication of antibacterial hydrogel beads based on modified-gum tragacanth/poly(vinyl alcohol)/Ag0 highly efficient sorbent for hard water softening, Chemosphere, 225 (2019) 259-269.
[27] M.H. Abu Elella, E.S. Goda, H.M. Abdallah, A.E. Shalan, H. Gamal, K.R. Yoon, Innovative bactericidal adsorbents containing modified xanthan gum/montmorillonite nanocomposites for wastewater treatment, Int. J. Biol. Macromol. 167 (2021) 1113-1125.
[28] M.H. Abu Elella, E.S. Goda, H. Gamal, S.M. El-Bahy, M.A. Nour, K.R. Yoon, Green antimicrobial adsorbent containing grafted xanthan gum/SiO2 nanocomposites for malachite green dye, Int. J. Biol. Macromol.191 (2021) 385-395.
[29] A. Foroughnia, A.D. Khalaji, E. Kolvari, N. Koukabi, Synthesis of new chitosan Schiff base and its Fe2O3 nanocomposite: Evaluation of methyl orange removal and antibacterial activity, Int. J. Biol. Macromol. 177 (2021) 83-91.
[30] M. Naushad, T. Ahamad, K.M. Al-Sheetan, Development of a polymeric nanocomposite as a high performance adsorbent for Pb(II) removal from water medium: Equilibrium, kinetic and antimicrobial activity, J. Hazard. Mater. 407 (2021) 124816.
[31] H. Ali, T.M. Tiama, A.M. Ismail, New and efficient NiO/chitosan/polyvinyl alcohol nanocomposites as antibacterial and dye adsorptive films, Int. J. Biol. Macromol. 186 (2021) 278-288.
[32] A.M. Youssef, M.E. El-Naggar, F.M. Malhat, H.M. El Sharkawi, Efficient removal of pesticides and heavy metals from wastewater and the antimicrobial activity of f-MWCNTs/PVA nanocomposite film, J. Clean. Prod. 206 (2019) 315-325.
[33] S. Ahmad Bhat, F. Zafar, A. Ullah Mirza, A. Hossain Mondal, A. Kareem, Q. Mohd. Rizwanul Haq, N. Nishat, NiO nanoparticle doped-PVA-MF polymer nanocomposites: Preparation, Congo red dye adsorption and antibacterial activity, Arab. J. Chem. 13 (2020) 5724-5739.
[34] E. Zong, C. Wang, J. Yang, H. Zhu, S. Jiang, X. Liu, P. Song, Preparation of TiO2/cellulose nanocomposites as antibacterial bio-adsorbents for effective phosphate removal from aqueous medium, Int. J. Biol. Macromol.182 (2021) 434-444.
[35] M.F. Hamza, A. Fouda, K.Z. Elwakeel, Y. Wei, E. Guibal, N.A. Hamad, Phosphorylation of Guar Gum/Magnetite/Chitosan Nanocomposites for Uranium (VI) Sorption and Antibacterial Applications, Molecules, 2021, pp. 1920.
[36] S. Nehra, A. Dhillon, D. Kumar, Freeze–dried synthesized bifunctional biopolymer nanocomposite for efficient fluoride removal and antibacterial activity, J. Environ. Sci. 94 (2020) 52-63.
[37] E.K. Radwan, M.E. El-Naggar, A. Abdel-Karim, A.R. Wassel, Multifunctional 3D cationic starch/nanofibrillated cellulose/silver nanoparticles nanocomposite cryogel: Synthesis, adsorption, and antibacterial characteristics, Int. J. Biol. Macromol.189 (2021) 420-431.
[38] S. Rasool, M. Imran, A. Haider, A. Shahzadi, W. Nabgan, I. Shahzadi, F. Medina, M.M. Algaradah, A.M. Fouda, A. Al-Shanini, M. Ikram, Efficient Dye Degradation and Antibacterial Activity of Carbon Dots/Chitosan-Doped La2O3 Nanorods: In Silico Molecular Docking Analysis, ACS Omega, 8 (2023) 25401-25409.
[39] T. Kamal, Y. Anwar, S.B. Khan, M.T.S. Chani, A.M. Asiri, Dye adsorption and bactericidal properties of TiO2/chitosan coating layer, Carbohydr. Polym. 148 (2016) 153-160.
[40] S.B. Khan, F. Ali, T. Kamal, Y. Anwar, A.M. Asiri, J. Seo, CuO embedded chitosan spheres as antibacterial adsorbent for dyes, Int. J. Biol. Macromol. 88 (2016) 113-119.
[41] S.A. Khan, S.B. Khan, T. Kamal, M. Yasir, A.M. Asiri, Antibacterial nanocomposites based on chitosan/Co-MCM as a selective and efficient adsorbent for organic dyes, Int. J. Biol. Macromol. 91 (2016) 744-751.
[42] M. Zendehdel, A. Zendehnam, F. Hoseini, M. Azarkish, Investigation of removal of chemical oxygen demand (COD) wastewater and antibacterial activity of nanosilver incorporated in poly (acrylamide-co-acrylic acid)/NaY zeolite nanocomposite, Polym. Bull. 72 (2015) 1281-1300.
[43] M.N. Thorat, A. Jagtap, S.G. Dastager, Fabrication of bacterial nanocellulose/polyethyleneimine (PEI-BC) based cationic adsorbent for efficient removal of anionic dyes, J. Polym. Res. 28 (2021) 354.
[44] J.K. Sahoo, S.K. Paikra, M. Mishra, H. Sahoo, Amine functionalized magnetic iron oxide nanoparticles: Synthesis, antibacterial activity and rapid removal of Congo red dye, J. Mol. Liq. 282 (2019) 428-440.
[45] L. Li, J. Iqbal, Y. Zhu, P. Zhang, W. Chen, A. Bhatnagar, Y. Du, Chitosan/Ag-hydroxyapatite nanocomposite beads as a potential adsorbent for the efficient removal of toxic aquatic pollutants, Int. J. Biol. Macromol. 120 (2018) 1752-1759.
[46] M.S.S. Dorraji, H.R. Ashjari, M.H. Rasoulifard, M. Rastgouy-Houjaghan, Polyurethane foam-cadmium sulfide nanocomposite with open cell structure: Dye removal and antibacterial applications, Korean J. Chem. Eng. 34 (2017) 547-554.
[47] Y. Anwar, Antibacterial and lead ions adsorption characteristics of chitosan-manganese dioxide bionanocomposite, Int. J. Biol. Macromol. 111 (2018) 1140-1145.
[48] N.Z. Pourbaghaei, M. Anbia, F. Rahimi, Fabrication of Nano Zero valent Iron/Biopolymer Composite with Antibacterial Properties for Simultaneous Removal of Nitrate and Humic Acid: Kinetics and Isotherm Studies, J. Polym. Environ. 30 (2022) 907-924.
[49] D. Pathania, R. Katwal, G. Sharma, M. Naushad, M.R. Khan, A.a.H. Al-Muhtaseb, Novel guar gum/Al2O3 nanocomposite as an effective photocatalyst for the degradation of malachite green dye, Int. J. Biol. Macromol. 87 (2016) 366-374.
[50] K. Shweta, H. Jha, Synthesis and characterization of crystalline carboxymethylated lignin–TEOS nanocomposites for metal adsorption and antibacterial activity, Bioresour. Bioprocess. 3 (2016) 31.
[51] B.S. Rathore, G. Sharma, D. Pathania, V.K. Gupta, Synthesis, characterization and antibacterial activity of cellulose acetate–tin (IV) phosphate nanocomposite, Carbohydr. Polym. 103 (2014) 221-227.
[52] Y. Jiang, J.-L. Gong, G.-M. Zeng, X.-M. Ou, Y.-N. Chang, C.-H. Deng, J. Zhang, H.-Y. Liu, S.-Y. Huang, Magnetic chitosan–graphene oxide composite for anti-microbial and dye removal applications, Int. J. Biol. Macromol. 82 (2016) 702-710.
[53] A.M. Atta, H.A. Al-Lohedan, A.O. Ezzat, A.M. Tawfik, A.I. Hashem, Synthesis of zinc oxide nanocomposites using poly (ionic liquids) based on quaternary ammonium acrylamidomethyl propane sulfonate for water treatment, J. Mol. Liq. 236 (2017) 38-47.
[54] M. Naushad, T. Ahamad, G. Sharma, A.a.H. Al-Muhtaseb, A.B. Albadarin, M.M. Alam, Z.A. Alothman, S.M. Alshehri, A.A. Ghfar, Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion, Chem. Eng. J. 300 (2016) 306-316.
[55] M. Liu, X. Zhang, Z. Li, L. Qu, R. Han, Fabrication of zirconium (IV)-loaded chitosan/Fe3O4/graphene oxide for efficient removal of alizarin red from aqueous solution, Carbohydr. Polym. 248 (2020) 116792.