Application of Polysaccharide-Based Materials in Food Packaging

Document Type : Review Article

Author

School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia

Abstract

This short review provides an overview of the applications of polysaccharides in food packaging and their pivotal role in addressing sustainability and food preservation challenges. Polysaccharides such as chitosan, cellulose, and starch have emerged as eco-friendly alternatives to traditional synthetic packaging materials. They offer various advantages including biodegradability, renewability, and the ability to tailor their properties to meet specific packaging requirements. These polysaccharide-based materials serve as essential components in food packaging applications such as wraps, coatings, and sachets. They not only contribute to reducing the environmental footprint of the food packaging industry but also aid in preserving the freshness and safety of food products. Furthermore, polysaccharides can be modified to enhance their moisture resistance, barrier properties, or controlled-release capabilities making them adaptable to diverse packaging requirements. Overall, polysaccharide-based materials have gained significant attention and the growing importance of polysaccharide-based materials in food packaging is underscored by their versatile nature, biodegradability, eco-friendly attributes, and positive impact on sustainability. The adoption of polysaccharide-based materials represents a promising step towards sustainable and effective solutions in the dynamic field of food packaging.

Graphical Abstract

Application of Polysaccharide-Based Materials in Food Packaging

Keywords


[1] P. Cazón, G. Velazquez, J.A. Ramírez, M. Vázquez, Polysaccharide-based films and coatings for food
packaging: A review, Food Hydrocoll. 68 (2017) 136–148.
[2] G. Dräger, A. Krause, L. Möller, S. Dumitriu, Carbohydrates, Handbook of Biodegradable Polymers: Isolation,
Synthesis, Characterization and Applications. 10 (2011) 155–193.
[3] J. Deng, E.Q. Zhu, G.F. Xu, N. Naik, V. Murugadoss, M.G. Ma, Z. Guo, Z.J. Shi, Overview of renewable
polysaccharide-based composites for biodegradable food packaging applications, Green Chemistry. 24 (2022)
480–492.
[4] P. Nechita, M.R. Iana-Roman, Review on Polysaccharides Used in Coatings for Food Packaging Papers, Coatings.10 (2020) 566.
[5] E. Díaz-Montes, Polysaccharides: Sources, Characteristics, Properties, and Their Application in Biodegradable Films,
Polysaccharides, 3 (2022) 480–501.
[6] X. Wang, L. Cheng, Y. Liu, R. Zhang, Z. Wu, P. Weng, P. Zhang, X. Zhang, Polysaccharide Regulation of Intestinal Flora: A
Viable Approach to Maintaining Normal Cognitive Performance and Treating Depression, Front Microbiol. 13 (2022) 807076.
[7] L. Su, Y. Feng, K. Wei, X. Xu, R. Liu, G. Chen, Carbohydrate-Based Macromolecular Biomaterials, Chem Rev. 121 (2021)
10950–11029.
[8] Z.A. Nur Hanani, Surface properties of biodegradable polymers for food packaging, Polym. Food Appl. 10(2018) 131–147.
[9] A. Plucinski, Z. Lyu, B.V.K.J. Schmidt, Polysaccharide nanoparticles: from fabrication to applications, J Mater Chem B. 9
(2021) 7030–7062.
[10] A. Plucinski, Z. Lyu, B.V.K.J. Schmidt, Polysaccharide nanoparticles: from fabrication to applications, J Mater Chem B. 9
(2021) 7030–7062.
[11] A. Nešić, G. Cabrera-Barjas, S. Dimitrijević-Branković, S. Davidović, N. Radovanović, C. Delattre, Prospect of
Polysaccharide-Based Materials as Advanced Food Packaging, Molecules, 25 (2019) 135.
[12] T. Liu T, Q. Ren, S. Wang, J. Gao, C. Shen, S. Zhang, Y.Wang, F. Guan, Chemical Modification of Polysaccharides: A
Review of Synthetic Approaches, Biological Activity and the Structure–Activity Relationship. Molecules. 28(2023):6073.
[13] S. Li, Q. Xiong, X. Lai, X. Li, M. Wan, J. Zhang, Y. Yan, M. Cao, L. Lu, J. Guan, D. Zhang, Y. Lin, Molecular Modification
of Polysaccharides and Resulting Bioactivities, Compr Rev Food Sci Food Saf. 15 (2016) 237–250.
[14] Y. Xu, Y. ji Wu, P. long Sun, F. ming Zhang, R.J. Linhardt, A. qiang Zhang, Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action, Int J Biol Macromol. 132 (2019) 970–977.
[15] L. Kumar, D. Ramakanth, K. Akhila, K.K. Gaikwad, Edible films and coatings for food packaging applications: a review,
Environ Chem Lett. 2021 20:1. 20 (2021) 875–900.
[16] S. Chhikara, D. Kumar, Edible Coating and Edible Film as Food Packaging Material: A Review, J Package Technol Res. 6
(2021) 1–10.
[17] Q. Chen, Y. Qi, Y. Jiang, W. Quan, H. Luo, K. Wu, S. Li, Q. Ouyang, Progress in Research of Chitosan Chemical Modification Technologies and Their Applications. Mar Drugs. 20(2022)536.
[18] A. Rajeswari, E.J.S. Christy, E. Swathi, A. Pius, Fabrication of improved cellulose acetate-based biodegradable films for food packaging applications, Environ Toxicol Chem. 2 (2020) 107–114.
[19] P. Cazón, M. Vázquez, Bacterial cellulose as a biodegradable food packaging material: A review, Food Hydrocoll. 113 (2021) 106530.
[20] J. Deng, E.Q. Zhu, G.F. Xu, N. Naik, V. Murugadoss, M.G. Ma, Z. Guo, Z.J. Shi, Overview of renewable polysaccharidebased composites for biodegradable food packaging applications, Green Chem. 24 (2022) 480–492.
[21] C. Liu, J. Huang, X. Zheng, S. Liu, K. Lu, K. Tang, J. Liu, Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications, Food Packag Shelf Life. 24 (2020) 100485.
[22] L. Xie, M. Shen, Z. Wang, J. Xie, Structure, function and food applications of carboxymethylated polysaccharides: A
comprehensive review, Trends Food Sci Technol. 118 (2021) 539–557.
[23] E. Ormanli, O. Bayraktar, U. Şahar, S. Tavman, S. Kumcuoglu, Development and characterization of films based on okra polysaccharides and whey protein isolate, J Food Meas Charact. 17 (2023) 264–277.
[24] A. Theocharidou, M. Ahmad, D. Petridis, C. Vasiliadou, J. Chen, C. Ritzoulis, Sensory perception of guar gum-induced
thickening: Correlations with rheological analysis, Food Hydrocoll. 111 (2021) 106246.
[25] T. Zhu, J. Mao, Y. Cheng, H. Liu, L. Lv, M. Ge, S. Li, J. Huang, Z. Chen, H. Li, L. Yang, Y. Lai, J.Y. Huang, H.Q. Li, Y.K.
Lai, Z. Chen, L. Yang, T.X. Zhu, Y. Cheng, M.Z. Ge, J.J. Mao, S.H. Li, H.R. Liu, L. Lv, Recent Progress of PolysaccharideBased Hydrogel Interfaces for Wound Healing and Tissue Engineering, Adv Mater Interfaces. 6 (2019) 1900761.
[26] N.S. Chandra, S. Gorantla, S. Priya, G. Singhvi, Insight on updates in polysaccharides for ocular drug delivery, Carbohydr Polym. 297 (2022) 120014.
[27] S. Anandha Kumar, E.R. Sujatha, An appraisal of the hydro-mechanical behaviour of polysaccharides, xanthan gum, guar gum and β-glucan amended soil, Carbohydr Polym. 265 (2021) 118083.
[28] N. Janani, E.N. Zare, F. Salimi, P. Makvandi, Antibacterial tragacanth gum-based nanocomposite films carrying ascorbic acid antioxidant for bioactive food packaging, Carbohydr Polym. 247 (2020) 116678.
[29] Z. Islamipour, E.N. Zare, F. Salimi, M. Ghomi, P. Makvandi, Biodegradable antibacterial and antioxidant nanocomposite films based on dextrin for bioactive food packaging, J Nanostructure Chem. 12 (2022) 991–1006.
[30] F.D. Moghaddam, G. Heidari, E.N. Zare, E. Djatoubai, A.C. Paiva-Santos, F.R. Bertani, A. Wu, Carbohydrate polymer-based nanocomposites for breast cancer treatment, Carbohydr Polym. 304 (2023) 120510.
[31] Y. Ouyang, Y. Qiu, Y. Liu, R. Zhu, Y. Chen, H.R. El-Seedi, X. Chen, C. Zhao, Cancer-fighting potentials of algal
polysaccharides as nutraceuticals, Food Res Inter. 147 (2021) 110522.
[32] F. Chen, G. Huang, Preparation and immunological activity of polysaccharides and their derivatives, Int J Biol Macromol. 112 (2018) 211–216.
[33] R. Cui, F. Zhu, Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications, Trends Food Sci Technol. 107 (2021) 491–508.
[34] N. Karaki, A. Aljawish, C. Humeau, L. Muniglia, J. Jasniewski, Enzymatic modification of polysaccharides: Mechanisms,
properties, and potential applications: A review, Enzyme Microb Technol. 90 (2016) 1–18.
[35] S. Tabasum, A. Noreen, M.F. Maqsood, H. Umar, N. Akram, Z. i. H. Nazli, S.A.S. Chatha, K.M. Zia, A review on versatile
applications of blends and composites of pullulan with natural and synthetic polymers, Int J Biol Macromol. 120 (2018) 603– 632.
[36] Â. Luís, A. Ramos, F. Domingues, Pullulan Films Containing Rockrose Essential Oil for Potential Food Packaging
Applications, Antibiotics. 9 (2020) 681.
[37] M. Thangavelu, S.V. Kulandhaivelu, Development and Characterization of Pullulan-Carboxymethyl Cellulose Blend Film for Packaging Applications, Int J Polym Sci. 2022 (2022).
[38] R.J.N. Tiozon, A.P. Bonto, N. Sreenivasulu, Enhancing the functional properties of rice starch through biopolymer blending for industrial applications: A review, Int J Biol Macromol. 192 (2021) 100–117.
[39] C.C. Piras, D.K. Smith, Multicomponent polysaccharide alginate-based bioinks, J Mater Chem B. 8 (2020) 8171–8188.
[40] H. Cui, Q. Cheng, C. Li, X. Chen, L. Lin, Improving packing performance of lily polysaccharide based edible films via
combining with sodium alginate and cold plasma treatment, Int J Biol Macromol. 206 (2022) 750–758.
[41] S. Punia Bangar, A.O. Ashogbon, A. Singh, V. Chaudhary, W.S. Whiteside, Enzymatic modification of starch: A green
approach for starch applications, Carbohydr Polym. 287 (2022) 119265.
[42] L. Dai, X. Xi, X. Li, W. Li, Y. Du, Y. Lv, W. Wang, Y. Ni, Self-assembled all-polysaccharide hydrogel film for versatile
paper-based food packaging, Carbohydr Polym. 271 (2021) 118425.
[43] E. Ojogbo, E.O. Ogunsona, T.H. Mekonnen, Chemical and physical modifications of starch for renewable polymeric materials, Materials Today Sustainability. 7–8 (2020) 100028.
[44] S.M. Martelli, C. Motta, T. Caon, J. Alberton, I.C. Bellettini, A.C.P. do Prado, P.L.M. Barreto, V. Soldi, Edible carboxymethyl cellulose films containing natural antioxidant and surfactants: α-tocopherol stability, in vitro release and film properties, LWT. 77 (2017) 21–29.
[45] L.F. Ballesteros, M.A. Cerqueira, J.A. Teixeira, S.I. Mussatto, Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides, Int J Biol Macromol. 106 (2018) 647–655.
[46] D. Kowalczyk, B. Baraniak, Effect of candelilla wax on functional properties of biopolymer emulsion films – A comparative study, Food Hydrocoll. 41 (2014) 195–209.
[47] Y. Tumbarski, R. Nikolova, N. Petkova, I. Ivanov, A. Lante, Biopreservation of Fresh Strawberries by Carboxymethyl
Cellulose Edible Coatings Enriched with a Bacteriocin from Bacillus methylotrophicus BM47, Food Technol Biotechnol. 57
(2019) 230–237.
[48] M. Imran, S. El-Fahmy, A.M. Revol-Junelles, S. Desobry, Cellulose derivative based active coatings: Effects of nisin and
plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films, Carbohydr Polym. 81
(2010) 219–225.
[49] Y. He, H. Li, X. Fei, L. Peng, Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications, Carbohydrate polymers, 252 (2021) 117156.
[50] N.M.L. Hansen, D. Plackett, Sustainable films and coatings from hemicelluloses: A review, Biomacromolecules. 9 (2008) 1493–1505.
[51] T.G. Timm, T.M. Costa, M.D. Alberton, C.V. Helm, L.B.B. Tavares, Mushroom β-glucans: application and innovation for
food industry and immunotherapy, Appl Microbiol Biotechnol. 107 (2023) 5035–5049.
[52] H. Zhang, S. Cui, H. Lv, X. Pei, M. Gao, S. Chen, J. Hu, Y. Zhou, Y. Liu, A crosslinking strategy to make neutral
polysaccharide nanofibers robust and biocompatible: With konjac glucomannan as an example, Carbohydr Polym. 215
(2019) 130–136.
[53] C. Fontes-Candia, E. Erboz, A. Martínez-Abad, A. López-Rubio, M. Martínez-Sanz, Superabsorbent food packaging bioactive cellulose-based aerogels from Arundo donax waste biomass, Food Hydrocoll. 96 (2019) 151–160.
[54] R. V Gadhave, S.K. Vineeth, P.T. Gadekar, Cross-linking of polyvinyl alcohol/starch blends by glutaraldehyde sodium
bisulfite for improvement in thermal and mechanical properties, J. Mater. Environ. Sci. 2020 (2020) 704–712.
[55] S.L.M. El Halal, D.H. Kringel, E. da R. Zavareze, A.R.G. Dias, Methods for Extracting Cereal Starches from Different
Sources: A Review, Starch - Stärke. 71 (2019) 1900128.
[56] L. Dai, J. Zhang, F. Cheng, Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films, Int J Biol Macromol. 132 (2019) 897–905.
[57] L. Meng, H. Liu, L. Yu, Q. Duan, L. Chen, F. Liu, Z. Shao, K. Shi, X. Lin, How water acting as both blowing agent and
plasticizer affect on starch-based foam, Ind Crops Prod. 134 (2019) 43–49.
[58] V. Volpe, G. De Feo, I. De Marco, R. Pantani, Use of sunflower seed fried oil as an ecofriendly plasticizer for starch and
application of this thermoplastic starch as a filler for PLA, Ind Crops Prod. 122 (2018) 545–552.
[59] S. Blohm, T. Heinze, Synthesis and properties of thermoplastic starch laurates, Carbohydr Res. 486 (2019) 107833.
[60] H.A. Fonseca-Florido, F. Soriano-Corral, R. Yañez-Macías, P. González-Morones, F. Hernández-Rodríguez, J. AguirreZurita, C. Ávila-Orta, J. Rodríguez-Velázquez, Effects of multiphase transitions and reactive extrusion on in situ
thermoplasticization/succination of cassava starch, Carbohydr Polym. 225 (2019) 115250.
[61] C. Weerapoprasit, J. Prachayawarakorn, Characterization and properties of biodegradable thermoplastic grafted starch films by different contents of methacrylic acid, Int J Biol Macromol. 123 (2019) 657–663.
[62] Y. Zhao, J.S. Teixeira, M.D.A. Saldaña, M.G. Gänzle, Antimicrobial activity of bioactive starch packaging films against
Listeria monocytogenes and reconstituted meat microbiota on ham, Int J Food Microbiol. 305 (2019) 108253.
[63] S.K. Baek, S. Kim, K. Bin Song, Cowpea starch films containing maqui berry extract and their application in salmon
packaging, Food Packag Shelf Life. 22 (2019) 100394.
[64] Y. Qin, Y. Liu, X. Zhang, J. Liu, Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films, Food Hydrocoll. 100 (2020) 105410.
[65] M. Villegas, A.L. Oliveira, R.C. Bazito, P. Vidinha, Development of an integrated one-pot process for the production and impregnation of starch aerogels in supercritical carbon dioxide, J Supercrit Fluids. 154 (2019) 104592.
[66] P. Franco, B. Aliakbarian, P. Perego, E. Reverchon, I. De Marco, Supercritical Adsorption of Quercetin on Aerogels for Active Packaging Applications, Ind Eng Chem Res. 57 (2018) 15105–15113.
[67] M.Y. Khalid, Z.U. Arif, Novel biopolymer-based sustainable composites for food packaging applications: A narrative review, Food Packag Shelf Life. 33 (2022) 100892.
[68] G. Hoti, A. Matencio, A.R. Pedrazzo, C. Cecone, S.L. Appleton, Y.K. Monfared, F. Caldera, F. Trotta, Nutraceutical Concepts and Dextrin-Based Delivery Systems, Int J Mol Sci. 23 (2022) 4102.
[69] A. Totosaus, I.A. Godoy, T.J. Ariza-Ortega, Structural and mechanical properties of edible films from composite mixtures of starch, dextrin and different types of chemically modified starch, Int J Polym Anal. 25 (2020) 517–528.
[70] D. Kumar, J. Pandey, V. Raj, P. Kumar, A Review on the Modification of Polysaccharide Through Graft Copolymerization for Various Potential Applications. Open Med Chem J.11(2017)109-126.
[71] F. Hentati, C. Delattre, A. V. Ursu, J. Desbrières, D. Le Cerf, C. Gardarin, S. Abdelkafi, P. Michaud, G. Pierre, Structural
characterization and antioxidant activity of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira
compressa, Carbohydr Polym. 198 (2018) 589–600.
[72] I.D. Hay, Z.U. Rehman, M.F. Moradali, Y. Wang, B.H.A. Rehm, Microbial alginate production, modification and its
applications, Microb Biotechnol. 6 (2013) 637–650.
[73] T.S. Parreidt, K. Müller, M. Schmid, Alginate-Based Edible Films and Coatings for Food Packaging Applications, Foods. 7 (2018) 170.
[74] S. Quraishi, M. Martins, A.A. Barros, P. Gurikov, S.P. Raman, I. Smirnova, A.R.C. Duarte, R.L. Reis, Novel non-cytotoxic
alginate–lignin hybrid aerogels as scaffolds for tissue engineering, J Supercrit Fluids. 105 (2015) 1–8.
[75] V.D. Prajapati, G.K. Jani, S.M. Khanda, Pullulan: An exopolysaccharide and its various applications, Carbohydr Polym. 95 (2013) 540–549.
[76] V.R.L. Oliveira, V. V Coelho, E.F.C. Sérvulo, V.M. De, A. Calado, Study of the Molecular Weight of Pullulan Produced by
Aureobasidium pullulans from Industrial Waste, Mater Res. 26 (2023) e20230060.
[77] S. Farris, I. Uysal Unalan, L. Introzzi, J. Maria Fuentes-Alventosa, C.A. Cozzolino, Pullulan-Based Films and Coatings for
Food Packaging: Present Applications, Emerging Opportunities, and Future Challenges, J Appl Polym Sci. (2014) 40539.
[78] M.E. Gounga, S.Y. Xu, Z. Wang, Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation, J Food Eng. 83 (2007) 521–530.
[79] M. Khanzadi, S.M. Jafari, H. Mirzaei, F.K. Chegini, Y. Maghsoudlou, D. Dehnad, Physical and mechanical properties in
biodegradable films of whey protein concentrate–pullulan by application of beeswax, Carbohydr Polym. 118 (2015) 24–29.
[80] F.F. Shih, K.W. Daigle, E.T. Champagne, Effect of rice wax on water vapour permeability and sorption properties of edible pullulan films, Food Chem. 127 (2011) 118–121.
[81] C.A. Cozzolino, G. Castelli, S. Trabattoni, S. Farris, Influence of colloidal silica nanoparticles on pullulan-coated BOPP film, Food Packag Shelf Life. 8 (2016) 50–55.
[82] C.A. Cozzolino, G. Campanella, H. Türe, R.T. Olsson, S. Farris, Microfibrillated cellulose and borax as mechanical, O2-
barrier, and surface-modulating agents of pullulan biocomposite coatings on BOPP, Carbohydr Polym. 143 (2016) 179–187.
[83] P. Shao, B. Niu, H. Chen, P. Sun, Fabrication and characterization of tea polyphenols loaded pullulan-CMC electrospun nanofiber for fruit preservation, Int J Biol Macromol. 107 (2018) 1908–1914.
[84] P. Samyn, A platform for functionalization of cellulose, chitin/chitosan, alginate with polydopamine: A review on
fundamentals and technical applications, Int J Biol Macromol. 178 (2021) 71–93.
[85] M.N.V. Ravi Kumar, A review of chitin and chitosan application, React Funct Polym. 46(2000)1-27.
[86] S.V.G. Kumari, K. Pakshirajan, G. Pugazhenthi, Recent advances and future prospects of cellulose, starch, chitosan, polylactic acid and polyhydroxyalkanoates for sustainable food packaging applications, Int J Biol Macromol. 221 (2022) 163–182.
[87] P. Jha, Effect of plasticizer and antimicrobial agents on functional properties of bionanocomposite films based on corn starchchitosan for food packaging applications, Int J Biol Macromol. 160 (2020) 571–582.
[88] B. Qu, Y. Luo, A review on the preparation and characterization of chitosan-clay nanocomposite films and coatings for food packaging applications, Carbohydrate Polymer Technologies and Applications. 2 (2021) 100102.
[89] S.M. Costa, D.P. Ferreira, P. Teixeira, L.F. Ballesteros, J.A. Teixeira, R. Fangueiro, Active natural-based films for food
packaging applications: The combined effect of chitosan and nanocellulose, Int J Biol Macromol. 177 (2021) 241–251.
[90] H. Wang, F. Ding, L. Ma, Y. Zhang, Edible films from chitosan-gelatin: Physical properties and food packaging application, Food Biosci. 40 (2021) 100871.
[91] P. Terzioğlu, F. Güney, F.N. Parın, İ. Şen, S. Tuna, Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications, Food Packag Shelf Life. 30 (2021) 100742.
[92] M. Llana-Ruiz-Cabello, S. Pichardo, J.M. Bermudez, A. Baños, J.J. Ariza, E. Guillamón, S. Aucejo, A.M. Cameán,
Characterisation and antimicrobial activity of active polypropylene films containing oregano essential oil and Allium extract to be used in packaging for meat products, Food Addit Contam. 35 (2018) 782–791.
[93] M.M. Jayakody, M.P.G. Vanniarachchy, I. Wijesekara, Seaweed derived alginate, agar, and carrageenan based edible coatings and films for the food industry: a review, J Food Meas Charact. 16 (2022) 1195–1227.
[94] P. Thiviya, A. Gamage, A. Liyanapathiranage, M. Makehelwala, R.S. Dassanayake, A. Manamperi, O. Merah, S. Mani, J.R. Koduru, T. Madhujith, Algal polysaccharides: Structure, preparation and applications in food packaging, Food Chem. 405 (2023) 134903.
[95] M. Huang, A.H.P. Theng, D. Yang, H. Yang, Influence of κ-carrageenan on the rheological behaviour of a model cake flour system, LWT. 136 (2021) 110324.
[96] B.R. Thakur, R.K. Singh, A.K. Handa. Chemistry and uses of pectin--a review. Crit Rev Food Sci Nutr. 37(1997)47-73.
[97] F. Liu, W. Chang, M. Chen, F. Xu, J. Ma, F. Zhong, Film-forming properties of guar gum, tara gum and locust bean gum, Food Hydrocoll. 98 (2020) 105007.
[98] I.M. Bhat, S.M. Wani, S.A. Mir, F.A. Masoodi, Advances in xanthan gum production, modifications and its applications,
Biocatal Agric Biotechnol. 42 (2022) 102328.
[99] E.M. Nsengiyumva, P. Alexandridis, Xanthan gum in aqueous solutions: Fundamentals and applications, Int J Biol Macromol. 216 (2022) 583–604.
[100] R. Priyadarshi, S.M. Kim, J.W. Rhim, Pectin/pullulan blend films for food packaging: Effect of blending ratio, Food Chem. 347 (2021) 129022.
[101] N. Prasad, N. Thombare, S.C. Sharma, S. Kumar, Gum Arabic – A versatile natural gum: A review on production, processing, properties and applications, Ind Crops Prod. 187 (2022) 115304.
[102] A.M. Islam, G.O. Phillips, A. Sljivo, M.J. Snowden, P.A. Williams, A review of recent developments on the regulatory,
structural and functional aspects of gum arabic, Food Hydrocoll. 11 (1997) 493–505.
[103] G. Crini, Historical review on chitin and chitosan biopolymers, Environ Chem Lett. 17 (2019) 1623–1643.
[104] K. Valachová, M.A. El Meligy, L. Šoltés, Hyaluronic acid and chitosan-based electrospun wound dressings: Problems and solutions, Int J Biol Macromol. 206 (2022) 74–91.
[105] Y.W. Ding, X.W. Zhang, C.H. Mi, X.Y. Qi, J. Zhou, D.X. Wei, Recent advances in hyaluronic acid-based hydrogels for 3D bioprinting in tissue engineering applications, Smart Mater Med. 4 (2023) 59–68.
[106] C. Mellinas, M. Ramos, A. Jiménez, M.C. Garrigós, Recent Trends in the Use of Pectin from Agro-Waste Residues as a
Natural-Based Biopolymer for Food Packaging Applications, Materials, 13 (2020) 673.
[107] M. Das, T.K. Giri, Hydrogels based on gellan gum in cell delivery and drug delivery, J Drug Deliv Sci Technol. 56 (2020) 101586.
[108] Y. Zhao, S. Jalili, Dextran, as a biological macromolecule for the development of bioactive wound dressing materials: A review of recent progress and future perspectives, Int J Biol Macromol. 207 (2022) 666–682.
 
[109] M. Dehghani Soltani, H. Meftahizadeh, M. Barani, A. Rahdar, S.M. Hosseinikhah, M. Hatami, M. Ghorbanpour, Guar
(Cyamopsis tetragonoloba L.) plant gum: From biological applications to advanced nanomedicine, Int J Biol Macromol. 193 (2021) 1972–1985.
[110] G. Dalei, S. Das, Carboxymethyl guar gum: A review of synthesis, properties and versatile applications, Eur Polym J. 176 (2022) 111433.
[111] B.M. Guerreiro, F. Freitas, J.C. Lima, J.C. Silva, M.A.M. Reis, Photoprotective effect of the fucose-containing
polysaccharide FucoPol, Carbohydr Polym. 259 (2021) 117761.
[112] N.M.L. Hansen, D. Plackett, Sustainable films and coatings from hemicelluloses: A review, Biomacromolecules. 9 (2008) 1493–1505.
[113] G.G. Chen, X.M. Qi, Y. Guan, F. Peng, C.L. Yao, R.C. Sun, High Strength Hemicellulose-Based Nanocomposite Film for
Food Packaging Applications, ACS Sustain Chem Eng. 4 (2016) 1985–1993.
[114] R. Zhang, W. Wang, H. Zhang, Y. Dai, H. Dong, H. Hou, Effects of hydrophobic agents on the physicochemical properties of edible agar/maltodextrin films, Food Hydrocoll. 88 (2019) 283–290.
[115] X. Wang, C. Guo, W. Hao, N. Ullah, L. Chen, Z. Li, X. Feng, Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose, Int J Biol Macromol. 118 (2018) 722–730.
[116] J. Sun, H. Jiang, H. Wu, C. Tong, J. Pang, C. Wu, Multifunctional bionanocomposite films based on konjac
glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging, Food Hydrocoll. 107
(2020) 105942.
[117] C. Wu, Y. Li, Y. Du, L. Wang, C. Tong, Y. Hu, J. Pang, Z. Yan, Preparation and characterization of konjac glucomannanbased bionanocomposite film for active food packaging, Food Hydrocoll. 89 (2019) 682–690.
[118] R.A.A. Muzzarelli, J. Boudrant, D. Meyer, N. Manno, M. Demarchis, M.G. Paoletti, Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial, Carbohydr Polym. 87 (2012) 995–1012.
[119] N. Zabihollahi, A. Alizadeh, H. Almasi, S. Hanifian, H. Hamishekar, Development and characterization of carboxymethyl cellulose based probiotic nanocomposite film containing cellulose nanofiber and inulin for chicken fillet shelf life extension, Int J Biol Macromol. 160 (2020) 409–417.
[120] R. Puscaselu, G. Gutt, S. Amariei, Rethinking the Future of Food Packaging: Biobased Edible Films for Powdered Food and Drinks, Molecules, 24 (2019) 3136.
[121] H. Cui, R. Xu, W. Hu, C. Li, M.A. Abdel-Samie, L. Lin, Effect of soy protein isolate nanoparticles loaded with litsea cubeba essential oil on performance of lentinan edible films, Int J Biol Macromol. 242 (2023) 124686.
[122] N. Zhao, Y. Chai, T. Wang, K. Wang, J. Jiang, H. yan Yang, Preparation and physical/chemical modification of
galactomannan film for food packaging, Int J Biol Macromol. 137 (2019) 1060–1067.
[123] M.A. Cerqueira, A.I. Bourbon, A.C. Pinheiro, J.T. Martins, B.W.S. Souza, J.A. Teixeira, A.A. Vicente, Galactomannans use
in the development of edible films/coatings for food applications, Trends Food Sci Technol. 22 (2011) 662–671.
[124] M. Serra, V. Weng, I.M. Coelhoso, V.D. Alves, C. Brazinha, Purification of Arabinoxylans from Corn Fiber and Preparation of Bioactive Films for Food Packaging, Membranes. 10 (2020) 95.
[125] C. Moreirinha, C. Vilela, N.H.C.S. Silva, R.J.B. Pinto, A. Almeida, M.A.M. Rocha, E. Coelho, M.A. Coimbra, A.J.D.
Silvestre, C.S.R. Freire, Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and
feruloylated compounds for active packaging, Food Hydrocoll. 108 (2020) 105836.
[126] V. Weng, C. Brazinha, I.M. Coelhoso, V.D. Alves, Decolorization of a Corn Fiber Arabinoxylan Extract and Formulation of Biodegradable Films for Food Packaging, Membranes. 11 (2021) 321.
[127] M. Quequezana Bedregal, E. Medrano de Jara, H. Palza Cordero, L. Miranda Zanardi, Development and characterization of novel packaging films from composite mixtures of rice-starch, tara gum and pectin, J Food Sci Technol. 60 (2023) 1153–1162.
[128] Q. Ma, L. Du, L. Wang, Tara gum/polyvinyl alcohol-based colorimetric NH3 indicator films incorporating curcumin for intelligent packaging, Sens Actuators B Chem. 244 (2017) 759–766.
[129] Q. Ma, L. Wang, Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins, Sens Actuators B Chem. 235 (2016) 401–407.
[130] A. Tóth, K. Halász, Characterization of edible biocomposite films directly prepared from psyllium seed husk and husk flour, Food Packag Shelf Life. 20 (2019) 100299.
[131] S. Sukhija, S. Singh, C.S. Riar, Physical, Mechanical, Morphological, and Barrier Properties of Elephant Foot Yam Starch, Whey Protein Concentrate and psyllium Husk Based Composite Biodegradable Films, Polym Compos. 39 (2018) E407–E415.
[132] M. Fathi, A. Babaei, H. Rostami, Development and characterization of locust bean gum-Viola anthocyanin-graphene oxide ternary nanocomposite as an efficient pH indicator for food packaging application, Food Packag Shelf Life. 34 (2022) 100934.
[133] S. Barak, D. Mudgil, Locust bean gum: Processing, properties and food applications—A review, Int J Biol Macromol. 66 (2014) 74–80.
[134] F. Liu, W. Chang, M. Chen, F. Xu, J. Ma, F. Zhong, Film-forming properties of guar gum, tara gum and locust bean gum, Food Hydrocoll. 98 (2020) 105007.
[135] C.H. Pagno, T.M.H. Costa, E.W. De Menezes, E. V. Benvenutti, P.F. Hertz, C.R. Matte, J. V. Tosati, A.R. Monteiro, A.O.
Rios, S.H. Flôres, Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity, Food Chem. 173 (2015) 755–762.
[136] G. Li, F. Zhu, Quinoa starch: Structure, properties, and applications, Carbohydr Polym. 181 (2018) 851–861.
[137] R.M. de Andrade, S.M. da Silva Júnior, S.V.C.R. Coutinho, N.G. Jaques, H. de V. Pina, B.G. Rodrigues, M.V.L. Fook,
P.C.R. Fernandes, A. Ries, R.M.R. Wellen, PCL/ZnO Bio-friendly Films as Food Packaging Material.Thermal and
morphological analysis, Matéria (Rio de Janeiro). 23 (2018) e12255.
[138] Y. He, G.J. Fan, C.E. Wu, X. Kou, T.T. Li, F. Tian, H. Gong, Influence of packaging materials on postharvest physiology
and texture of garlic cloves during refrigeration storage, Food Chem. 298 (2019) 125019.
[139] C. Swaroop, M. Shukla, Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications, Int J Biol Macromol. 113 (2018) 729–736.
[140] M.M. Rahman, M.S. Islam, G.S. Li, Development of PLA/CS/ZnO nanocomposites and optimization its mechanical, thermal and water absorption properties, Polym Test. 68 (2018) 302–308.
[141] S. Azlin-Hasim, M.C. Cruz-Romero, M.A. Morris, S.C. Padmanabhan, E. Cummins, J.P. Kerry, The Potential Application
of Antimicrobial Silver Polyvinyl Chloride Nanocomposite Films to Extend the Shelf-Life of Chicken Breast Fillets, Food
Bioproc Tech. 9 (2016) 1661–1673.
[142] N. Mlalila, A. Hilonga, H. Swai, F. Devlieghere, P. Ragaert, Antimicrobial packaging based on starch, poly(3-
hydroxybutyrate) and poly(lactic-co-glycolide) materials and application challenges, Trends Food Sci Technol. 74 (2018) 1– 11.
[143] N. Biglari, I. Orita, T. Fukui, K. Sudesh, A study on the effects of increment and decrement repeated fed-batch feeding of glucose on the production of poly(3-hydroxybutyrate) [P(3HB)] by a newly engineered Cupriavidus necator NSDG-GG mutant
in batch fill-and-draw fermentation, J Biotechnol. 307 (2020) 77–86.
[144] N. Biglari, M. Ganjali Dashti, P. Abdeshahian, I. Orita, T. Fukui, K. Sudesh, Enhancement of bioplastic polyhydroxybutyrate P(3HB) production from glucose by newly engineered strain Cupriavidus necator NSDG-GG using response surface methodology, 3 Biotech. 8 (2018) 1–11.
[145] G. Santagata, F. Valerio, A. Cimmino, G. Dal Poggetto, M. Masi, M. Di Biase, M. Malinconico, P. Lavermicocca, A.
Evidente, Chemico-physical and antifungal properties of poly(butylene succinate)/cavoxin blend: Study of a novel bioactive polymeric based system, Eur Polym J. 94 (2017) 230–247.
[146] R.S. Ayu, A. Khalina, A.S. Harmaen, K. Zaman, N. Mohd Nurrazi, T. Isma, C.H. Lee, Effect of Empty Fruit Brunch
reinforcement in PolyButylene-Succinate/Modified Tapioca Starch blend for Agricultural Mulch Films, Sci Rep 2020 10:1. 10 (2020) 1–7.
[147] G.A. Valencia, E.N. Zare, P. Makvandi, T.J. Gutiérrez, Self-Assembled Carbohydrate Polymers for Food Applications: A
Review, Compr Rev Food Sci Food Saf. 18 (2019) 2009–2024.