[1] P. Cazón, G. Velazquez, J.A. Ramírez, M. Vázquez, Polysaccharide-based films and coatings for food
packaging: A review, Food Hydrocoll. 68 (2017) 136–148.
[2] G. Dräger, A. Krause, L. Möller, S. Dumitriu, Carbohydrates, Handbook of Biodegradable Polymers: Isolation,
Synthesis, Characterization and Applications. 10 (2011) 155–193.
[3] J. Deng, E.Q. Zhu, G.F. Xu, N. Naik, V. Murugadoss, M.G. Ma, Z. Guo, Z.J. Shi, Overview of renewable
polysaccharide-based composites for biodegradable food packaging applications, Green Chemistry. 24 (2022)
480–492.
[4] P. Nechita, M.R. Iana-Roman, Review on Polysaccharides Used in Coatings for Food Packaging Papers, Coatings.10 (2020) 566.
[5] E. Díaz-Montes, Polysaccharides: Sources, Characteristics, Properties, and Their Application in Biodegradable Films,
Polysaccharides, 3 (2022) 480–501.
[6] X. Wang, L. Cheng, Y. Liu, R. Zhang, Z. Wu, P. Weng, P. Zhang, X. Zhang, Polysaccharide Regulation of Intestinal Flora: A
Viable Approach to Maintaining Normal Cognitive Performance and Treating Depression, Front Microbiol. 13 (2022) 807076.
[7] L. Su, Y. Feng, K. Wei, X. Xu, R. Liu, G. Chen, Carbohydrate-Based Macromolecular Biomaterials, Chem Rev. 121 (2021)
10950–11029.
[8] Z.A. Nur Hanani, Surface properties of biodegradable polymers for food packaging, Polym. Food Appl. 10(2018) 131–147.
[9] A. Plucinski, Z. Lyu, B.V.K.J. Schmidt, Polysaccharide nanoparticles: from fabrication to applications, J Mater Chem B. 9
(2021) 7030–7062.
[10] A. Plucinski, Z. Lyu, B.V.K.J. Schmidt, Polysaccharide nanoparticles: from fabrication to applications, J Mater Chem B. 9
(2021) 7030–7062.
[11] A. Nešić, G. Cabrera-Barjas, S. Dimitrijević-Branković, S. Davidović, N. Radovanović, C. Delattre, Prospect of
Polysaccharide-Based Materials as Advanced Food Packaging, Molecules, 25 (2019) 135.
[12] T. Liu T, Q. Ren, S. Wang, J. Gao, C. Shen, S. Zhang, Y.Wang, F. Guan, Chemical Modification of Polysaccharides: A
Review of Synthetic Approaches, Biological Activity and the Structure–Activity Relationship. Molecules. 28(2023):6073.
[13] S. Li, Q. Xiong, X. Lai, X. Li, M. Wan, J. Zhang, Y. Yan, M. Cao, L. Lu, J. Guan, D. Zhang, Y. Lin, Molecular Modification
of Polysaccharides and Resulting Bioactivities, Compr Rev Food Sci Food Saf. 15 (2016) 237–250.
[14] Y. Xu, Y. ji Wu, P. long Sun, F. ming Zhang, R.J. Linhardt, A. qiang Zhang, Chemically modified polysaccharides: Synthesis, characterization, structure activity relationships of action, Int J Biol Macromol. 132 (2019) 970–977.
[15] L. Kumar, D. Ramakanth, K. Akhila, K.K. Gaikwad, Edible films and coatings for food packaging applications: a review,
Environ Chem Lett. 2021 20:1. 20 (2021) 875–900.
[16] S. Chhikara, D. Kumar, Edible Coating and Edible Film as Food Packaging Material: A Review, J Package Technol Res. 6
(2021) 1–10.
[17] Q. Chen, Y. Qi, Y. Jiang, W. Quan, H. Luo, K. Wu, S. Li, Q. Ouyang, Progress in Research of Chitosan Chemical Modification Technologies and Their Applications. Mar Drugs. 20(2022)536.
[18] A. Rajeswari, E.J.S. Christy, E. Swathi, A. Pius, Fabrication of improved cellulose acetate-based biodegradable films for food packaging applications, Environ Toxicol Chem. 2 (2020) 107–114.
[19] P. Cazón, M. Vázquez, Bacterial cellulose as a biodegradable food packaging material: A review, Food Hydrocoll. 113 (2021) 106530.
[20] J. Deng, E.Q. Zhu, G.F. Xu, N. Naik, V. Murugadoss, M.G. Ma, Z. Guo, Z.J. Shi, Overview of renewable polysaccharidebased composites for biodegradable food packaging applications, Green Chem. 24 (2022) 480–492.
[21] C. Liu, J. Huang, X. Zheng, S. Liu, K. Lu, K. Tang, J. Liu, Heat sealable soluble soybean polysaccharide/gelatin blend edible films for food packaging applications, Food Packag Shelf Life. 24 (2020) 100485.
[22] L. Xie, M. Shen, Z. Wang, J. Xie, Structure, function and food applications of carboxymethylated polysaccharides: A
comprehensive review, Trends Food Sci Technol. 118 (2021) 539–557.
[23] E. Ormanli, O. Bayraktar, U. Şahar, S. Tavman, S. Kumcuoglu, Development and characterization of films based on okra polysaccharides and whey protein isolate, J Food Meas Charact. 17 (2023) 264–277.
[24] A. Theocharidou, M. Ahmad, D. Petridis, C. Vasiliadou, J. Chen, C. Ritzoulis, Sensory perception of guar gum-induced
thickening: Correlations with rheological analysis, Food Hydrocoll. 111 (2021) 106246.
[25] T. Zhu, J. Mao, Y. Cheng, H. Liu, L. Lv, M. Ge, S. Li, J. Huang, Z. Chen, H. Li, L. Yang, Y. Lai, J.Y. Huang, H.Q. Li, Y.K.
Lai, Z. Chen, L. Yang, T.X. Zhu, Y. Cheng, M.Z. Ge, J.J. Mao, S.H. Li, H.R. Liu, L. Lv, Recent Progress of PolysaccharideBased Hydrogel Interfaces for Wound Healing and Tissue Engineering, Adv Mater Interfaces. 6 (2019) 1900761.
[26] N.S. Chandra, S. Gorantla, S. Priya, G. Singhvi, Insight on updates in polysaccharides for ocular drug delivery, Carbohydr Polym. 297 (2022) 120014.
[27] S. Anandha Kumar, E.R. Sujatha, An appraisal of the hydro-mechanical behaviour of polysaccharides, xanthan gum, guar gum and β-glucan amended soil, Carbohydr Polym. 265 (2021) 118083.
[28] N. Janani, E.N. Zare, F. Salimi, P. Makvandi, Antibacterial tragacanth gum-based nanocomposite films carrying ascorbic acid antioxidant for bioactive food packaging, Carbohydr Polym. 247 (2020) 116678.
[29] Z. Islamipour, E.N. Zare, F. Salimi, M. Ghomi, P. Makvandi, Biodegradable antibacterial and antioxidant nanocomposite films based on dextrin for bioactive food packaging, J Nanostructure Chem. 12 (2022) 991–1006.
[30] F.D. Moghaddam, G. Heidari, E.N. Zare, E. Djatoubai, A.C. Paiva-Santos, F.R. Bertani, A. Wu, Carbohydrate polymer-based nanocomposites for breast cancer treatment, Carbohydr Polym. 304 (2023) 120510.
[31] Y. Ouyang, Y. Qiu, Y. Liu, R. Zhu, Y. Chen, H.R. El-Seedi, X. Chen, C. Zhao, Cancer-fighting potentials of algal
polysaccharides as nutraceuticals, Food Res Inter. 147 (2021) 110522.
[32] F. Chen, G. Huang, Preparation and immunological activity of polysaccharides and their derivatives, Int J Biol Macromol. 112 (2018) 211–216.
[33] R. Cui, F. Zhu, Ultrasound modified polysaccharides: A review of structure, physicochemical properties, biological activities and food applications, Trends Food Sci Technol. 107 (2021) 491–508.
[34] N. Karaki, A. Aljawish, C. Humeau, L. Muniglia, J. Jasniewski, Enzymatic modification of polysaccharides: Mechanisms,
properties, and potential applications: A review, Enzyme Microb Technol. 90 (2016) 1–18.
[35] S. Tabasum, A. Noreen, M.F. Maqsood, H. Umar, N. Akram, Z. i. H. Nazli, S.A.S. Chatha, K.M. Zia, A review on versatile
applications of blends and composites of pullulan with natural and synthetic polymers, Int J Biol Macromol. 120 (2018) 603– 632.
[36] Â. Luís, A. Ramos, F. Domingues, Pullulan Films Containing Rockrose Essential Oil for Potential Food Packaging
Applications, Antibiotics. 9 (2020) 681.
[37] M. Thangavelu, S.V. Kulandhaivelu, Development and Characterization of Pullulan-Carboxymethyl Cellulose Blend Film for Packaging Applications, Int J Polym Sci. 2022 (2022).
[38] R.J.N. Tiozon, A.P. Bonto, N. Sreenivasulu, Enhancing the functional properties of rice starch through biopolymer blending for industrial applications: A review, Int J Biol Macromol. 192 (2021) 100–117.
[39] C.C. Piras, D.K. Smith, Multicomponent polysaccharide alginate-based bioinks, J Mater Chem B. 8 (2020) 8171–8188.
[40] H. Cui, Q. Cheng, C. Li, X. Chen, L. Lin, Improving packing performance of lily polysaccharide based edible films via
combining with sodium alginate and cold plasma treatment, Int J Biol Macromol. 206 (2022) 750–758.
[41] S. Punia Bangar, A.O. Ashogbon, A. Singh, V. Chaudhary, W.S. Whiteside, Enzymatic modification of starch: A green
approach for starch applications, Carbohydr Polym. 287 (2022) 119265.
[42] L. Dai, X. Xi, X. Li, W. Li, Y. Du, Y. Lv, W. Wang, Y. Ni, Self-assembled all-polysaccharide hydrogel film for versatile
paper-based food packaging, Carbohydr Polym. 271 (2021) 118425.
[43] E. Ojogbo, E.O. Ogunsona, T.H. Mekonnen, Chemical and physical modifications of starch for renewable polymeric materials, Materials Today Sustainability. 7–8 (2020) 100028.
[44] S.M. Martelli, C. Motta, T. Caon, J. Alberton, I.C. Bellettini, A.C.P. do Prado, P.L.M. Barreto, V. Soldi, Edible carboxymethyl cellulose films containing natural antioxidant and surfactants: α-tocopherol stability, in vitro release and film properties, LWT. 77 (2017) 21–29.
[45] L.F. Ballesteros, M.A. Cerqueira, J.A. Teixeira, S.I. Mussatto, Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides, Int J Biol Macromol. 106 (2018) 647–655.
[46] D. Kowalczyk, B. Baraniak, Effect of candelilla wax on functional properties of biopolymer emulsion films – A comparative study, Food Hydrocoll. 41 (2014) 195–209.
[47] Y. Tumbarski, R. Nikolova, N. Petkova, I. Ivanov, A. Lante, Biopreservation of Fresh Strawberries by Carboxymethyl
Cellulose Edible Coatings Enriched with a Bacteriocin from Bacillus methylotrophicus BM47, Food Technol Biotechnol. 57
(2019) 230–237.
[48] M. Imran, S. El-Fahmy, A.M. Revol-Junelles, S. Desobry, Cellulose derivative based active coatings: Effects of nisin and
plasticizer on physico-chemical and antimicrobial properties of hydroxypropyl methylcellulose films, Carbohydr Polym. 81
(2010) 219–225.
[49] Y. He, H. Li, X. Fei, L. Peng, Carboxymethyl cellulose/cellulose nanocrystals immobilized silver nanoparticles as an effective coating to improve barrier and antibacterial properties of paper for food packaging applications, Carbohydrate polymers, 252 (2021) 117156.
[50] N.M.L. Hansen, D. Plackett, Sustainable films and coatings from hemicelluloses: A review, Biomacromolecules. 9 (2008) 1493–1505.
[51] T.G. Timm, T.M. Costa, M.D. Alberton, C.V. Helm, L.B.B. Tavares, Mushroom β-glucans: application and innovation for
food industry and immunotherapy, Appl Microbiol Biotechnol. 107 (2023) 5035–5049.
[52] H. Zhang, S. Cui, H. Lv, X. Pei, M. Gao, S. Chen, J. Hu, Y. Zhou, Y. Liu, A crosslinking strategy to make neutral
polysaccharide nanofibers robust and biocompatible: With konjac glucomannan as an example, Carbohydr Polym. 215 (2019) 130–136.
[53] C. Fontes-Candia, E. Erboz, A. Martínez-Abad, A. López-Rubio, M. Martínez-Sanz, Superabsorbent food packaging bioactive cellulose-based aerogels from Arundo donax waste biomass, Food Hydrocoll. 96 (2019) 151–160.
[54] R. V Gadhave, S.K. Vineeth, P.T. Gadekar, Cross-linking of polyvinyl alcohol/starch blends by glutaraldehyde sodium
bisulfite for improvement in thermal and mechanical properties, J. Mater. Environ. Sci. 2020 (2020) 704–712.
[55] S.L.M. El Halal, D.H. Kringel, E. da R. Zavareze, A.R.G. Dias, Methods for Extracting Cereal Starches from Different
Sources: A Review, Starch - Stärke. 71 (2019) 1900128.
[56] L. Dai, J. Zhang, F. Cheng, Effects of starches from different botanical sources and modification methods on physicochemical properties of starch-based edible films, Int J Biol Macromol. 132 (2019) 897–905.
[57] L. Meng, H. Liu, L. Yu, Q. Duan, L. Chen, F. Liu, Z. Shao, K. Shi, X. Lin, How water acting as both blowing agent and
plasticizer affect on starch-based foam, Ind Crops Prod. 134 (2019) 43–49.
[58] V. Volpe, G. De Feo, I. De Marco, R. Pantani, Use of sunflower seed fried oil as an ecofriendly plasticizer for starch and
application of this thermoplastic starch as a filler for PLA, Ind Crops Prod. 122 (2018) 545–552.
[59] S. Blohm, T. Heinze, Synthesis and properties of thermoplastic starch laurates, Carbohydr Res. 486 (2019) 107833.
[60] H.A. Fonseca-Florido, F. Soriano-Corral, R. Yañez-Macías, P. González-Morones, F. Hernández-Rodríguez, J. AguirreZurita, C. Ávila-Orta, J. Rodríguez-Velázquez, Effects of multiphase transitions and reactive extrusion on in situ
thermoplasticization/succination of cassava starch, Carbohydr Polym. 225 (2019) 115250.
[61] C. Weerapoprasit, J. Prachayawarakorn, Characterization and properties of biodegradable thermoplastic grafted starch films by different contents of methacrylic acid, Int J Biol Macromol. 123 (2019) 657–663.
[62] Y. Zhao, J.S. Teixeira, M.D.A. Saldaña, M.G. Gänzle, Antimicrobial activity of bioactive starch packaging films against
Listeria monocytogenes and reconstituted meat microbiota on ham, Int J Food Microbiol. 305 (2019) 108253.
[63] S.K. Baek, S. Kim, K. Bin Song, Cowpea starch films containing maqui berry extract and their application in salmon
packaging, Food Packag Shelf Life. 22 (2019) 100394.
[64] Y. Qin, Y. Liu, X. Zhang, J. Liu, Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films, Food Hydrocoll. 100 (2020) 105410.
[65] M. Villegas, A.L. Oliveira, R.C. Bazito, P. Vidinha, Development of an integrated one-pot process for the production and impregnation of starch aerogels in supercritical carbon dioxide, J Supercrit Fluids. 154 (2019) 104592.
[66] P. Franco, B. Aliakbarian, P. Perego, E. Reverchon, I. De Marco, Supercritical Adsorption of Quercetin on Aerogels for Active Packaging Applications, Ind Eng Chem Res. 57 (2018) 15105–15113.
[67] M.Y. Khalid, Z.U. Arif, Novel biopolymer-based sustainable composites for food packaging applications: A narrative review, Food Packag Shelf Life. 33 (2022) 100892.
[68] G. Hoti, A. Matencio, A.R. Pedrazzo, C. Cecone, S.L. Appleton, Y.K. Monfared, F. Caldera, F. Trotta, Nutraceutical Concepts and Dextrin-Based Delivery Systems, Int J Mol Sci. 23 (2022) 4102.
[69] A. Totosaus, I.A. Godoy, T.J. Ariza-Ortega, Structural and mechanical properties of edible films from composite mixtures of starch, dextrin and different types of chemically modified starch, Int J Polym Anal. 25 (2020) 517–528.
[70] D. Kumar, J. Pandey, V. Raj, P. Kumar, A Review on the Modification of Polysaccharide Through Graft Copolymerization for Various Potential Applications. Open Med Chem J.11(2017)109-126.
[71] F. Hentati, C. Delattre, A. V. Ursu, J. Desbrières, D. Le Cerf, C. Gardarin, S. Abdelkafi, P. Michaud, G. Pierre, Structural
characterization and antioxidant activity of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseiracompressa, Carbohydr Polym. 198 (2018) 589–600.
[72] I.D. Hay, Z.U. Rehman, M.F. Moradali, Y. Wang, B.H.A. Rehm, Microbial alginate production, modification and its
applications, Microb Biotechnol. 6 (2013) 637–650.
[73] T.S. Parreidt, K. Müller, M. Schmid, Alginate-Based Edible Films and Coatings for Food Packaging Applications, Foods. 7 (2018) 170.
[74] S. Quraishi, M. Martins, A.A. Barros, P. Gurikov, S.P. Raman, I. Smirnova, A.R.C. Duarte, R.L. Reis, Novel non-cytotoxic
alginate–lignin hybrid aerogels as scaffolds for tissue engineering, J Supercrit Fluids. 105 (2015) 1–8.
[75] V.D. Prajapati, G.K. Jani, S.M. Khanda, Pullulan: An exopolysaccharide and its various applications, Carbohydr Polym. 95 (2013) 540–549.
[76] V.R.L. Oliveira, V. V Coelho, E.F.C. Sérvulo, V.M. De, A. Calado, Study of the Molecular Weight of Pullulan Produced by
Aureobasidium pullulans from Industrial Waste, Mater Res. 26 (2023) e20230060.
[77] S. Farris, I. Uysal Unalan, L. Introzzi, J. Maria Fuentes-Alventosa, C.A. Cozzolino, Pullulan-Based Films and Coatings for
Food Packaging: Present Applications, Emerging Opportunities, and Future Challenges, J Appl Polym Sci. (2014) 40539.
[78] M.E. Gounga, S.Y. Xu, Z. Wang, Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation, J Food Eng. 83 (2007) 521–530.
[79] M. Khanzadi, S.M. Jafari, H. Mirzaei, F.K. Chegini, Y. Maghsoudlou, D. Dehnad, Physical and mechanical properties in
biodegradable films of whey protein concentrate–pullulan by application of beeswax, Carbohydr Polym. 118 (2015) 24–29.
[80] F.F. Shih, K.W. Daigle, E.T. Champagne, Effect of rice wax on water vapour permeability and sorption properties of edible pullulan films, Food Chem. 127 (2011) 118–121.
[81] C.A. Cozzolino, G. Castelli, S. Trabattoni, S. Farris, Influence of colloidal silica nanoparticles on pullulan-coated BOPP film, Food Packag Shelf Life. 8 (2016) 50–55.
[82] C.A. Cozzolino, G. Campanella, H. Türe, R.T. Olsson, S. Farris, Microfibrillated cellulose and borax as mechanical, O2-
barrier, and surface-modulating agents of pullulan biocomposite coatings on BOPP, Carbohydr Polym. 143 (2016) 179–187.
[83] P. Shao, B. Niu, H. Chen, P. Sun, Fabrication and characterization of tea polyphenols loaded pullulan-CMC electrospun nanofiber for fruit preservation, Int J Biol Macromol. 107 (2018) 1908–1914.
[84] P. Samyn, A platform for functionalization of cellulose, chitin/chitosan, alginate with polydopamine: A review on
fundamentals and technical applications, Int J Biol Macromol. 178 (2021) 71–93.
[85] M.N.V. Ravi Kumar, A review of chitin and chitosan application, React Funct Polym. 46(2000)1-27.
[86] S.V.G. Kumari, K. Pakshirajan, G. Pugazhenthi, Recent advances and future prospects of cellulose, starch, chitosan, polylactic acid and polyhydroxyalkanoates for sustainable food packaging applications, Int J Biol Macromol. 221 (2022) 163–182.
[87] P. Jha, Effect of plasticizer and antimicrobial agents on functional properties of bionanocomposite films based on corn starchchitosan for food packaging applications, Int J Biol Macromol. 160 (2020) 571–582.
[88] B. Qu, Y. Luo, A review on the preparation and characterization of chitosan-clay nanocomposite films and coatings for food packaging applications, Carbohydrate Polymer Technologies and Applications. 2 (2021) 100102.
[89] S.M. Costa, D.P. Ferreira, P. Teixeira, L.F. Ballesteros, J.A. Teixeira, R. Fangueiro, Active natural-based films for food
packaging applications: The combined effect of chitosan and nanocellulose, Int J Biol Macromol. 177 (2021) 241–251.
[90] H. Wang, F. Ding, L. Ma, Y. Zhang, Edible films from chitosan-gelatin: Physical properties and food packaging application, Food Biosci. 40 (2021) 100871.
[91] P. Terzioğlu, F. Güney, F.N. Parın, İ. Şen, S. Tuna, Biowaste orange peel incorporated chitosan/polyvinyl alcohol composite films for food packaging applications, Food Packag Shelf Life. 30 (2021) 100742.
[92] M. Llana-Ruiz-Cabello, S. Pichardo, J.M. Bermudez, A. Baños, J.J. Ariza, E. Guillamón, S. Aucejo, A.M. Cameán,
Characterisation and antimicrobial activity of active polypropylene films containing oregano essential oil and Allium extract to be used in packaging for meat products, Food Addit Contam. 35 (2018) 782–791.
[93] M.M. Jayakody, M.P.G. Vanniarachchy, I. Wijesekara, Seaweed derived alginate, agar, and carrageenan based edible coatings and films for the food industry: a review, J Food Meas Charact. 16 (2022) 1195–1227.
[94] P. Thiviya, A. Gamage, A. Liyanapathiranage, M. Makehelwala, R.S. Dassanayake, A. Manamperi, O. Merah, S. Mani, J.R. Koduru, T. Madhujith, Algal polysaccharides: Structure, preparation and applications in food packaging, Food Chem. 405 (2023) 134903.
[95] M. Huang, A.H.P. Theng, D. Yang, H. Yang, Influence of κ-carrageenan on the rheological behaviour of a model cake flour system, LWT. 136 (2021) 110324.
[96] B.R. Thakur, R.K. Singh, A.K. Handa. Chemistry and uses of pectin--a review. Crit Rev Food Sci Nutr. 37(1997)47-73.
[97] F. Liu, W. Chang, M. Chen, F. Xu, J. Ma, F. Zhong, Film-forming properties of guar gum, tara gum and locust bean gum, Food Hydrocoll. 98 (2020) 105007.
[98] I.M. Bhat, S.M. Wani, S.A. Mir, F.A. Masoodi, Advances in xanthan gum production, modifications and its applications,
Biocatal Agric Biotechnol. 42 (2022) 102328.
[99] E.M. Nsengiyumva, P. Alexandridis, Xanthan gum in aqueous solutions: Fundamentals and applications, Int J Biol Macromol. 216 (2022) 583–604.
[100] R. Priyadarshi, S.M. Kim, J.W. Rhim, Pectin/pullulan blend films for food packaging: Effect of blending ratio, Food Chem. 347 (2021) 129022.
[101] N. Prasad, N. Thombare, S.C. Sharma, S. Kumar, Gum Arabic – A versatile natural gum: A review on production, processing, properties and applications, Ind Crops Prod. 187 (2022) 115304.
[102] A.M. Islam, G.O. Phillips, A. Sljivo, M.J. Snowden, P.A. Williams, A review of recent developments on the regulatory,
structural and functional aspects of gum arabic, Food Hydrocoll. 11 (1997) 493–505.
[103] G. Crini, Historical review on chitin and chitosan biopolymers, Environ Chem Lett. 17 (2019) 1623–1643.
[104] K. Valachová, M.A. El Meligy, L. Šoltés, Hyaluronic acid and chitosan-based electrospun wound dressings: Problems and solutions, Int J Biol Macromol. 206 (2022) 74–91.
[105] Y.W. Ding, X.W. Zhang, C.H. Mi, X.Y. Qi, J. Zhou, D.X. Wei, Recent advances in hyaluronic acid-based hydrogels for 3D bioprinting in tissue engineering applications, Smart Mater Med. 4 (2023) 59–68.
[106] C. Mellinas, M. Ramos, A. Jiménez, M.C. Garrigós, Recent Trends in the Use of Pectin from Agro-Waste Residues as a
Natural-Based Biopolymer for Food Packaging Applications, Materials, 13 (2020) 673.
[107] M. Das, T.K. Giri, Hydrogels based on gellan gum in cell delivery and drug delivery, J Drug Deliv Sci Technol. 56 (2020) 101586.
[108] Y. Zhao, S. Jalili, Dextran, as a biological macromolecule for the development of bioactive wound dressing materials: A review of recent progress and future perspectives, Int J Biol Macromol. 207 (2022) 666–682.
[109] M. Dehghani Soltani, H. Meftahizadeh, M. Barani, A. Rahdar, S.M. Hosseinikhah, M. Hatami, M. Ghorbanpour, Guar
(Cyamopsis tetragonoloba L.) plant gum: From biological applications to advanced nanomedicine, Int J Biol Macromol. 193 (2021) 1972–1985.
[110] G. Dalei, S. Das, Carboxymethyl guar gum: A review of synthesis, properties and versatile applications, Eur Polym J. 176 (2022) 111433.
[111] B.M. Guerreiro, F. Freitas, J.C. Lima, J.C. Silva, M.A.M. Reis, Photoprotective effect of the fucose-containing
polysaccharide FucoPol, Carbohydr Polym. 259 (2021) 117761.
[112] N.M.L. Hansen, D. Plackett, Sustainable films and coatings from hemicelluloses: A review, Biomacromolecules. 9 (2008) 1493–1505.
[113] G.G. Chen, X.M. Qi, Y. Guan, F. Peng, C.L. Yao, R.C. Sun, High Strength Hemicellulose-Based Nanocomposite Film for
Food Packaging Applications, ACS Sustain Chem Eng. 4 (2016) 1985–1993.
[114] R. Zhang, W. Wang, H. Zhang, Y. Dai, H. Dong, H. Hou, Effects of hydrophobic agents on the physicochemical properties of edible agar/maltodextrin films, Food Hydrocoll. 88 (2019) 283–290.
[115] X. Wang, C. Guo, W. Hao, N. Ullah, L. Chen, Z. Li, X. Feng, Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose, Int J Biol Macromol. 118 (2018) 722–730.
[116] J. Sun, H. Jiang, H. Wu, C. Tong, J. Pang, C. Wu, Multifunctional bionanocomposite films based on konjac
glucomannan/chitosan with nano-ZnO and mulberry anthocyanin extract for active food packaging, Food Hydrocoll. 107 (2020) 105942.
[117] C. Wu, Y. Li, Y. Du, L. Wang, C. Tong, Y. Hu, J. Pang, Z. Yan, Preparation and characterization of konjac glucomannanbased bionanocomposite film for active food packaging, Food Hydrocoll. 89 (2019) 682–690.
[118] R.A.A. Muzzarelli, J. Boudrant, D. Meyer, N. Manno, M. Demarchis, M.G. Paoletti, Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial, Carbohydr Polym. 87 (2012) 995–1012.
[119] N. Zabihollahi, A. Alizadeh, H. Almasi, S. Hanifian, H. Hamishekar, Development and characterization of carboxymethyl cellulose based probiotic nanocomposite film containing cellulose nanofiber and inulin for chicken fillet shelf life extension, Int J Biol Macromol. 160 (2020) 409–417.
[120] R. Puscaselu, G. Gutt, S. Amariei, Rethinking the Future of Food Packaging: Biobased Edible Films for Powdered Food and Drinks, Molecules, 24 (2019) 3136.
[121] H. Cui, R. Xu, W. Hu, C. Li, M.A. Abdel-Samie, L. Lin, Effect of soy protein isolate nanoparticles loaded with litsea cubeba essential oil on performance of lentinan edible films, Int J Biol Macromol. 242 (2023) 124686.
[122] N. Zhao, Y. Chai, T. Wang, K. Wang, J. Jiang, H. yan Yang, Preparation and physical/chemical modification of
galactomannan film for food packaging, Int J Biol Macromol. 137 (2019) 1060–1067.
[123] M.A. Cerqueira, A.I. Bourbon, A.C. Pinheiro, J.T. Martins, B.W.S. Souza, J.A. Teixeira, A.A. Vicente, Galactomannans use
in the development of edible films/coatings for food applications, Trends Food Sci Technol. 22 (2011) 662–671.
[124] M. Serra, V. Weng, I.M. Coelhoso, V.D. Alves, C. Brazinha, Purification of Arabinoxylans from Corn Fiber and Preparation of Bioactive Films for Food Packaging, Membranes. 10 (2020) 95.
[125] C. Moreirinha, C. Vilela, N.H.C.S. Silva, R.J.B. Pinto, A. Almeida, M.A.M. Rocha, E. Coelho, M.A. Coimbra, A.J.D.
Silvestre, C.S.R. Freire, Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and
feruloylated compounds for active packaging, Food Hydrocoll. 108 (2020) 105836.
[126] V. Weng, C. Brazinha, I.M. Coelhoso, V.D. Alves, Decolorization of a Corn Fiber Arabinoxylan Extract and Formulation of Biodegradable Films for Food Packaging, Membranes. 11 (2021) 321.
[127] M. Quequezana Bedregal, E. Medrano de Jara, H. Palza Cordero, L. Miranda Zanardi, Development and characterization of novel packaging films from composite mixtures of rice-starch, tara gum and pectin, J Food Sci Technol. 60 (2023) 1153–1162.
[128] Q. Ma, L. Du, L. Wang, Tara gum/polyvinyl alcohol-based colorimetric NH3 indicator films incorporating curcumin for intelligent packaging, Sens Actuators B Chem. 244 (2017) 759–766.
[129] Q. Ma, L. Wang, Preparation of a visual pH-sensing film based on tara gum incorporating cellulose and extracts from grape skins, Sens Actuators B Chem. 235 (2016) 401–407.
[130] A. Tóth, K. Halász, Characterization of edible biocomposite films directly prepared from psyllium seed husk and husk flour, Food Packag Shelf Life. 20 (2019) 100299.
[131] S. Sukhija, S. Singh, C.S. Riar, Physical, Mechanical, Morphological, and Barrier Properties of Elephant Foot Yam Starch, Whey Protein Concentrate and psyllium Husk Based Composite Biodegradable Films, Polym Compos. 39 (2018) E407–E415.
[132] M. Fathi, A. Babaei, H. Rostami, Development and characterization of locust bean gum-Viola anthocyanin-graphene oxide ternary nanocomposite as an efficient pH indicator for food packaging application, Food Packag Shelf Life. 34 (2022) 100934.
[133] S. Barak, D. Mudgil, Locust bean gum: Processing, properties and food applications—A review, Int J Biol Macromol. 66 (2014) 74–80.
[134] F. Liu, W. Chang, M. Chen, F. Xu, J. Ma, F. Zhong, Film-forming properties of guar gum, tara gum and locust bean gum, Food Hydrocoll. 98 (2020) 105007.
[135] C.H. Pagno, T.M.H. Costa, E.W. De Menezes, E. V. Benvenutti, P.F. Hertz, C.R. Matte, J. V. Tosati, A.R. Monteiro, A.O.
Rios, S.H. Flôres, Development of active biofilms of quinoa (Chenopodium quinoa W.) starch containing gold nanoparticles and evaluation of antimicrobial activity, Food Chem. 173 (2015) 755–762.
[136] G. Li, F. Zhu, Quinoa starch: Structure, properties, and applications, Carbohydr Polym. 181 (2018) 851–861.
[137] R.M. de Andrade, S.M. da Silva Júnior, S.V.C.R. Coutinho, N.G. Jaques, H. de V. Pina, B.G. Rodrigues, M.V.L. Fook,
P.C.R. Fernandes, A. Ries, R.M.R. Wellen, PCL/ZnO Bio-friendly Films as Food Packaging Material.Thermal and
morphological analysis, Matéria (Rio de Janeiro). 23 (2018) e12255.
[138] Y. He, G.J. Fan, C.E. Wu, X. Kou, T.T. Li, F. Tian, H. Gong, Influence of packaging materials on postharvest physiology
and texture of garlic cloves during refrigeration storage, Food Chem. 298 (2019) 125019.
[139] C. Swaroop, M. Shukla, Nano-magnesium oxide reinforced polylactic acid biofilms for food packaging applications, Int J Biol Macromol. 113 (2018) 729–736.
[140] M.M. Rahman, M.S. Islam, G.S. Li, Development of PLA/CS/ZnO nanocomposites and optimization its mechanical, thermal and water absorption properties, Polym Test. 68 (2018) 302–308.
[141] S. Azlin-Hasim, M.C. Cruz-Romero, M.A. Morris, S.C. Padmanabhan, E. Cummins, J.P. Kerry, The Potential Application
of Antimicrobial Silver Polyvinyl Chloride Nanocomposite Films to Extend the Shelf-Life of Chicken Breast Fillets, Food
Bioproc Tech. 9 (2016) 1661–1673.
[142] N. Mlalila, A. Hilonga, H. Swai, F. Devlieghere, P. Ragaert, Antimicrobial packaging based on starch, poly(3-
hydroxybutyrate) and poly(lactic-co-glycolide) materials and application challenges, Trends Food Sci Technol. 74 (2018) 1– 11.
[143] N. Biglari, I. Orita, T. Fukui, K. Sudesh, A study on the effects of increment and decrement repeated fed-batch feeding of glucose on the production of poly(3-hydroxybutyrate) [P(3HB)] by a newly engineered Cupriavidus necator NSDG-GG mutant
in batch fill-and-draw fermentation, J Biotechnol. 307 (2020) 77–86.
[144] N. Biglari, M. Ganjali Dashti, P. Abdeshahian, I. Orita, T. Fukui, K. Sudesh, Enhancement of bioplastic polyhydroxybutyrate P(3HB) production from glucose by newly engineered strain Cupriavidus necator NSDG-GG using response surface methodology, 3 Biotech. 8 (2018) 1–11.
[145] G. Santagata, F. Valerio, A. Cimmino, G. Dal Poggetto, M. Masi, M. Di Biase, M. Malinconico, P. Lavermicocca, A.
Evidente, Chemico-physical and antifungal properties of poly(butylene succinate)/cavoxin blend: Study of a novel bioactive polymeric based system, Eur Polym J. 94 (2017) 230–247.
[146] R.S. Ayu, A. Khalina, A.S. Harmaen, K. Zaman, N. Mohd Nurrazi, T. Isma, C.H. Lee, Effect of Empty Fruit Brunch
reinforcement in PolyButylene-Succinate/Modified Tapioca Starch blend for Agricultural Mulch Films, Sci Rep 2020 10:1. 10 (2020) 1–7.
[147] G.A. Valencia, E.N. Zare, P. Makvandi, T.J. Gutiérrez, Self-Assembled Carbohydrate Polymers for Food Applications: A
Review, Compr Rev Food Sci Food Saf. 18 (2019) 2009–2024.