Fabrication and Optical Properties Study of Poly(m-phenylene diamine)/ Sulfonated Single-walled Carbon Nanotubes Nanocomposite

Document Type : Original Article

Authors

1 School of Chemistry, Damghan University, Damghan, Iran

2 School of Physics, Damghan University, Damghan, Iran.

Abstract

A poly(m-phenylene diamine) (PmPDA)/sulfonated single-walled carbon nanotubes (SWCNT-SO3H) nanocomposite was synthesized via in situ polymerization. Successful incorporation of SWCNT-SO3H into the PmPDA matrix was confirmed through Fourier transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning electron microscopy, UV-visible spectroscopy, and thermogravimetric analysis. The nanocomposite exhibited a red shift of 6 nm in the UV-visible spectrum compared to the pristine polymer, attributed to the conductivity of the incorporated nanotubes. The thermogravimetric analysis also showed improved thermal stability for the nanocomposite over the polymer. Importantly, the nonlinear optical properties were studied via Z-scan measurements. The nanocomposite displayed a nonlinear refractive index on the order of 10−3 m2/W and a nonlinear absorption coefficient on the order of 10−5 m/W, demonstrating self-defocusing behavior. Varying the concentration from 0.3 to 0.7 mg/mL and input laser intensity from 6.2 to 164.5 mW/cm2 tuned the optical nonlinearity. Overall, the easy integration of carbon nanotubes makes the PmPDA nanocomposite a useful self-defocusing material for optical limiting and switching applications.

Graphical Abstract

Fabrication and Optical Properties Study of Poly(m-phenylene diamine)/ Sulfonated Single-walled Carbon Nanotubes Nanocomposite

Keywords


[1] P. Yu, R.Y. Bao, X.J. Shi, W. Yang, M.B. Yang, Self-assembled high-strength hydroxyapatite/graphene oxide/chitosan composite hydrogel for bone tissue engineering, Carbohydr. Polym. 155 (2017) 507–515.
[2] M. Peyvandtalab, E.N. Zare, M. Jabbari, G. Heidari, Carboxymethyl dextrin-grafted-poly(aniline-co-m-phenylenediamine)@Fe3O4/CuO bionanocomposite: Physico-chemical characteristics and antioxidant, antibacterial, and cytotoxicity studies for potential biomedicine, Eur. Polym. J. 186 (2023) 111862.
[3] A. Ghahremanloo, E.N. Zare, F. Salimi, P. Makvandi, Electroconductive and photoactive poly(phenylenediamine)s with antioxidant and antimicrobial activities for potential photothermal therapy, New J. Chem. 46 (2022) 6255–6266..
[4] A. Tiwari, Y. Sharma, S. Hattori, D. Terada, A.K. Sharma, A.P.F. Turner, H. Kobayashi, Influence of poly(n-isopropylacrylamide)-CNT-polyaniline three-dimensional electrospun microfabric scaffolds on cell growth and viability, Biopolymers. 99 (2013) 334–341.
[5] H. Jing, E. Sahle-Demessie, G.A. Sorial, Inhibition of biofilm growth on polymer-MWCNTs composites and metal surfaces, Sci. Total Environ. 633 (2018) 167–178.
[6] S.G. Dhole, S.A. Dake, T.A. Prajapati, S.N. Helambe, Effect of ZnO filler on structural and optical properties of polyaniline-ZnO nanocomposites, Procedia Manuf. 20 (2018) 127–134.
[7] M. Khairy, M.E. Gouda, Electrical and optical properties of nickel ferrite/polyaniline nanocomposite, J. Adv. Res. 6 (2015) 555–562.
[8] Y. Zhang, Y. Wang, S. Qi, S. Dunn, H. Dong, T. Button, Enhanced discharge energy density of rGO/PVDF nanocomposites: The role of the heterointerface, Appl. Phys. Lett. 112 (2018).
[9] A.N. Gheymasi, Y. Rajabi, E.N. Zare, Nonlinear optical properties of poly (aniline-co-pyrrole)@ ZnO-based nanofluid, Opt. Mater. (Amst). 102 (2020) 109835.
[10] S. Dadkhah, Y. Rajabi, E.N. Zare, Thermal lensing effect in laser nanofluids based on poly (aniline-co-ortho phenylenediamine)@TiO2 interaction, J. Electron. Mater. 50 (2021) 4896–4907.
[11] M. Liu, H.S. Quah, S. Wen, J. Wang, P.S. Kumar, G. Eda, J.J. Vittal, W. Ji, Nonlinear optical properties of a one-dimensional coordination polymer, J. Mater. Chem. C. 5 (2017) 2936–2941.
[12] O. Muller, C. Hege, M. Guerchoux, L. Merlat, Synthesis, characterization and nonlinear optical properties of polylactide and PMMA based azophloxine nanocomposites for optical limiting applications, Mater. Sci. Eng. B. 276 (2022) 115524.
[13] Y. Wei, X. Ling, L. Zou, D. Lai, H. Lu, Y. Xu, A facile approach toward preparation of sulfonated multi-walled carbon nanotubes and their dispersibility in various solvents, Colloids Surfaces A Physicochem. Eng. Asp. 482 (2015) 507–513.
[14] M. Safa, Y. Rajabi, M. Ardyanian, Influence of preparation method on the structural, linear, and nonlinear optical properties of TiN nanoparticles, J. Mater. Sci. Mater. Electron. 32 (2021) 19455–19477.
[15] M.T. Hosseinzadeh, A. Hosseinian, Novel thin film composite nanofiltration membrane using monoethanolamine (MEA) and diethanolamine (DEA) with m-phenylenediamine (MPD), J. Polym. Environ. 26 (2018) 1745–1753.
[16] H. Yu, Y. Jin, Z. Li, F. Peng, H. Wang, Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst, J. Solid State Chem. 181 (2008) 432–438.
[17] L. Zhang, L. Chai, J. Liu, H. Wang, W. Yu, P. Sang, pH manipulation: a facile method for lowering oxidation state and 
good yield of poly (m-phenylenediamine) and its powerful Ag+ adsorption ability, Langmuir. 27 (2011) 13729–13738.
[18] N. Badawi, M. Bhatia, N. Agrawal, S. Bashir, S. Ramesh, K. Ramesh, M. Bhuyan, Highly conductive-sensitive, single-walled carbon nanotubes–poly (3, 4-ethylenedioxythiophene) polystyrene sulphonate-coated cotton thread for thermally stable fabric and wearable e-textiles, Bull. Mater. Sci. 46 (2023) 208.
[19] B. Duran, G. Bereket, M. Duran, Electrochemical synthesis and characterization of poly (m-phenylenediamine) films on copper for corrosion protection, Prog. Org. Coatings. 73 (2012) 162–168.
[20] S. Bilal, R. Holze, In situ UV–vis spectroelectrochemistry of poly (o-phenylenediamine-co-m-toluidine), Electrochim. Acta. 52 (2007) 5346–5356.
[21] Y.-W. Lin, T.-M. Wu, Synthesis and characterization of externally doped sulfonated polyaniline/multi-walled carbon nanotube composites, Compos. Sci. Technol. 69 (2009) 2559–2565.
[22] F.B. Kheyrabadi, E.N. Zare, Antimicrobial nanocomposite adsorbent based on poly(meta-phenylenediamine) for remediation of lead (II) from water medium, Sci. Rep. 12 (2022) 1–14.
[23] C.Y. Du, T.S. Zhao, Z.X. Liang, Sulfonation of carbon-nanotube supported platinum catalysts for polymer electrolyte fuel cells, J. Power Sources. 176 (2008) 9–15.
[24] A. Di Francescantonio, A. Zilli, D. Rocco, L. Coudrat, F. Conti, P. Biagioni, L. Duò, A. Lemaître, C. De Angelis, G. Leo, All-optical free-space routing of upconverted light by metasurfaces via nonlinear interferometry, Nat. Nanotechnol. (2023) 1–8.
[25] B. Sephton, A. Vallés, I. Nape, M.A. Cox, F. Steinlechner, T. Konrad, J.P. Torres, F.S. Roux, A. Forbes, Quantum transport of high-dimensional spatial information with a nonlinear detector, Nat. Commun. 14 (2023) 8243.
[26] K. Ji, Q. Zhong, L. Ge, G. Beaudoin, I. Sagnes, F. Raineri, R. El-Ganainy, A.M. Yacomotti, Tracking exceptional points above the lasing threshold, Nat. Commun. 14 (2023) 8304.
[27] M.H.M. Ara, H. Akheratdoost, E. Koushki, Self-diffraction and high nonlinear optical properties of carbon nanotubes under CW and pulsed laser illumination, J. Mol. Liq. 206 (2015) 4–9.
[28] M.H.M. Ara, S. Salmani, M. Esmaeilzadeh, S.H. Mousavi, E. Koushki, K. Shakouri, Optical characterization of Erioglaucine using z-scan technique, beam radius variations and diffraction pattern in far-field, Curr. Appl. Phys. 9 (2009) 885–889.
[29] M.D. Zidan, A.W. Allaf, A. Allahham, A. Al-Zier, Z-scan measurements of single walled carbon nanotube doped acetylenedicarboxylic acid polymer under CW laser, Opt. Laser Technol. 80 (2016) 72–76.
[30] D.N. Christodoulides, I.C. Khoo, G.J. Salamo, G.I. Stegeman, E.W. Van Stryland, Nonlinear refraction and absorption: mechanisms and magnitudes, Adv. Opt. Photonics. 2 (2010) 60–200.
[31] M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, High-sensitivity, single-beam n 2 measurements, Opt. Lett. 14 (1989) 955–957.
[32]E. Koushki, M.H. Majles Ara, H. Akherat Doost, Z-scan technique for saturable absorption using diffraction method in γ-alumina nanoparticles, Appl. Phys. B. 115 (2014) 279–284.