Simulation of the Effect of Gallium Arsenide/Aluminum Gallium Arsenide Multilayer Material Structure on LED Performance

Document Type : Original Article

Author

Electrical Engineering Department, Hakim Sabzevari University, Sabzevar, Iran

Abstract

In various researches, the effect of different types of semiconductor materials on the performance of light diodes has been investigated. Gallium arsenide and aluminum gallium arsenide are among the materials used for light diodes. The use of multilayer structures in light-emitting diodes can help improve their performance; Because these structures can improve interactions and light radiation and convert more optimal energy into light. Researchers are optimizing and designing light-emitting diodes to increase light intensity with less energy consumption as light-emitting diodes gradually replace incandescent bulbs. In this study, multilayer photodiode structures using gallium arsenide/gallium aluminum arsenide semiconductors are investigated and simulated, and the results of the article show that multilayer photodiode structures with gallium arsenide/gallium aluminum arsenide semiconductors, by simulating and examining electric fields, potential, radiation intensity And the consumption power of light diodes helps to optimize and achieve optimal performance. This research can be a guide for the development and improvement of light diodes with less energy consumption and better performance.

Graphical Abstract

Simulation of the Effect of Gallium Arsenide/Aluminum Gallium Arsenide Multilayer Material Structure on LED Performance

Keywords


[1] B. Monemar, G. Pozina, Group III-nitride based hetero and quantum structures, Prog. Quantum Electron. 24 (2000) 239–290.
[2] E.F. Schubert, Light-Emitting Diodes, 2nd ed., Cambridge University Press, 2006.
[3] A. Zukauskas, M.S. Shur, R. Gaska, Introduction to Solid State Lighting, Wiley-Interscience, New York, 2002.
[4] F. Wall, P.S. Martin, G. Harber, High-power LED package requirements, Proc. SPIE 5187 (2004) 85–92.
[5] Z. Liu, S. Liu, K. Wang, X. Luo, Status and prospects for phosphor-based white LED packaging, Front. Optoelectron. China 2 (2009) 119–140.
[6] Slocum, A. (2005). A technology assessment of light emitting diode (LED) solid-state lighting for general illumination (No. 2168-2018-8077).
[7] S. Muthu, F.J.P. Schuurmans, M.D. Pashley, Red, green and blue LEDs for white light illumination, IEEE J. Selected Topics Quantum Electron. 8 (2002) 333–338.
[8] A. Mills, Lighting: the progress and promise of LEDs, III–V, Review 17 (2004) 39–41.
[9] N. Narendran, Y. Gu, J.P. Freyssnier, H. Yu, L. Deng, Solid-state lighting: failure analysis of white LEDs, J. Crystal Growth 268 (2004) 449–456.
[10] N. Narendran, Improved performance white LED, Proc. SPIE 5941 (2005) 594108.
[11] M.G. Craford, LEDs for solid state lighting and other emerging applications: status, trends and challenges, Proc. SPIE 5941 (2005) 594101.
[12] E.F. Schubert, J.K. Kim, Solid-state light sources getting smart, Science 308 (2005) 1274–1278.
[13] A.I. Zhmakin, Enhancement of light extraction from light emitting diodes. Physics Reports, 498 (2011) 189-241.
[14] Y. Ohno, Optical metrology for LEDs and solid state lighting, Proc. SPIE 6046 (2006) 604625.
[15] W. Bergbauer, Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells. Nanotechnology 21(2010) 305201.
[16] W.Bergbauer, N-face GaN nanorods: Continuous-flux MOVPE growth and morphological properties. J. Cryst. Growth 315 (2011) 164–167.
[17] K. Choi, M. Arita, Y. Arakawa, Selective-area growth of thin GaN nanowires by MOCVD. J. Cryst. Growth 357 (2012) 58–61.
[18] S. D.Hersee, X. Sun, X. Wang, The controlled growth of GaN nanowires. Nano Lett. 6 (2006)1808–11.
[19] K. Hiramatsu, Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO). J. Cryst. Growth 221 (2000) 316–326.
[20] A.Lundskog, Controlled growth of hexagonal GaN pyramids by hot-wall MOCVD. J. Cryst. Growth 363 (2013) 287–293.
[21] S. Tanaka, Y. Kawaguchi, N. Sawaki, M. Hibino, K. Hiramatsu, Defect structure in selective area growth GaN pyramid on (111)Si substrate. Appl. Phys. Lett. 76 (2000) 2701.
[22] T.S. Zheleva, O. Nam, M.D. Bremser, R.F. Davis, Dislocation density reduction via lateral epitaxy in selectively grown GaN structures. Appl. Phys. Lett. 71(1997) 2472 .
[23] A.Chandolu, Selective Area Growth of GaN Nano Islands by Metal Organic Chemical Vapor Deposition: Experiments and Computer Simulations. MRS Proc. 955 (2011) I07–114.
[24] V. Kachkanov, Structural dynamics of GaN microcrystals in Evolutionary Selection Selective Area Growth probed by X-ray microdiffraction. Sci. Rep. 4(2014)4651.
[25] D. Kapolnek, Anisotropic epitaxial lateral growth in GaN selective area epitaxy. Appl. Phys. Lett. 71(1997) 1204.
[26] Y. Kawaguchi, Selective Area Growth of GaN on Si Substrate Using SiO2 Mask by Metalorganic Vapor Phase Epitaxy. Jpn. J. Appl. Phys. 37 (1998) L966–L969.
[27] X. Li, Characteristics of GaN stripes grown by selective-area metalorganic chemical vapor deposition. J. Electron. Mater. 26(1997) 306–310
[28] S. Okada, H. Miyake, K. Hiramatsu, Y. Enatsu, S. Nagao, Selective-area growth of GaN on non- and semi-polar bulk GaN substrates. Jpn. J. Appl. Phys. 53(2014) 05FL04
[29] Y. Wang, F. Hu, K. Hane, Lateral epitaxial overgrowth of GaN on a patterned GaN-on-silicon substrate by molecular beam epitaxy. Semicond. Sci. Technol. 27 (2011) 024008.
[30] Z.J. Liu, T. Huang, J. Ma, C. Liu, K.M. Lau, Monolithic Integration of AlGaN/GaN HEMT on LED by MOCVD. IEEE Electron Device Lett. 35 (2014) 330–332.
[31] B. Zhang, High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates. J. Cryst. Growth 298, (2007) 725–730.
[32] D. Zhu, D. Wallis, C. J. Humphreys, Prospects of III-nitride optoelectronics grown on Si. Rep. Prog. Phys. 76 (2013) 106501.
[33] M. Ishida, T. Ueda, T. Tanaka, D. Ueda, GaN on Si Technologies for Power Switching Devices. IEEE Trans. Electron Devices 60 (2013) 3053–3059.
[34] S. Musumeci, V. Barba, Gallium Nitride Power Devices in Power Electronics Applications: State of Art and Perspectives. Energies 16 (2023) 3894.
[35] Y. Zhang, Electrothermal Simulation and Thermal Performance Study of GaN Vertical and Lateral Power Transistors. IEEE Trans. Electron Devices 60 (2013) 2224–2230.
[36] S. Chowdhury, B.L. Swenson, M.H. Wong, & U.K.Mishra, Current status and scope of gallium nitride-based vertical transistors for high-power electronics application. Semicond. Sci. Technol. 28 (2013) 074014.
[37] J.L. Hudgins, G.S. Simin, E. Santi, M.A. Khan, An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 18 (2003), 907–914.
[38] P. Srivastava, Record Breakdown Voltage (2200 V) of GaN DHFETs on Si With 2-μm Buffer Thickness by Local Substrate Removal. IEEE Electron Device Lett. 32 (2011) 30–32.
[39] M.J. Scott, Merits of gallium nitride based power conversion. Semicond. Sci. Technol. 28(2013) 074013.
[40] A.Tanaka, R. Chen, K. Jungjohann, Strong Geometrical Effects in Submillimeter Selective Area Growth and Light Extraction of GaN Light Emitting Diodes on Sapphire. Sci Rep 5(2015) 17314.
[41] C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits, Laser Photon. Rev. 10 (2016) 870–894.
[42] A. Orieux, M. A. M. Versteegh, K. D. Jöns, and S. Ducci, Semiconductor devices for entangled photon pair generation: a review, Rep. Prog. Phys. 80 (2017) 076001.
[43] M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform, Nano Lett. 18 (2018) 6892–6897.
[44] C. McDonald, G. Moody, S. W. Nam, R. P. Mirin, J. M. Shainline, A. McCaughan, S. Buckley, and K. L. Silverman, III–V photonic integrated circuit with waveguide-coupled light-emitting diodes and WSi superconducting single-photon detectors, Appl. Phys. Lett. 115 (2019) 081105.
[45] S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev, Material platforms for integrated quantum photonics, Opt. Mater. Express 7 (2017) 111–132.
[46] E. Mobini, D. H. G. Espinosa, K. Vyas, and K. Dolgaleva, AlGaAs nonlinear integrated photonics, Micromachines 13 (2020) 991 (2022).
[47] F. Baboux, G. Moody, S. Ducci, S. Nonlinear integrated quantum photonics with AlGaAs. Optica, 10 (2023) 917-931.
[48] M. Kamali Moghaddam, M. Moslemi, M. Farzaneh. Analytical Modeling of ZrO2, HfO2 and SiO2 Effect over Tunneling Field Effect Transistor. J. Electron. Mater. 49 (2020), 1467-1472.
[49] S.E. Hosseini, M.N. Moghaddam (2015). Analytical modeling of a pnin tunneling field effect transistor. Mater. Sci. Semicond. Process. 30 (2015) 56-61.
[50] M. Kamali, S.E. Hosseini. Investigation of a SiGe tunnel FET: comparison to Si and Ge TFETs. J. Electr. Syst. 2(2014), 21-26.
[51] S. Kaiser, F. Symalla, T. Neumann, A. Plews, D. Vander Velpen, F. Vandeplas, A.Nejim. Automated Multiscale Design Flow for Organic LED Design. In Electrochemical Society Meeting Abstracts. J. Electrochem. Soc. 239 (2021) 1059-1059.