[1] B. Monemar, G. Pozina, Group III-nitride based hetero and quantum structures, Prog. Quantum Electron. 24 (2000) 239–290.
[2] E.F. Schubert, Light-Emitting Diodes, 2nd ed., Cambridge University Press, 2006.
[3] A. Zukauskas, M.S. Shur, R. Gaska, Introduction to Solid State Lighting, Wiley-Interscience, New York, 2002.
[4] F. Wall, P.S. Martin, G. Harber, High-power LED package requirements, Proc. SPIE 5187 (2004) 85–92.
[5] Z. Liu, S. Liu, K. Wang, X. Luo, Status and prospects for phosphor-based white LED packaging, Front. Optoelectron. China 2 (2009) 119–140.
[6] Slocum, A. (2005). A technology assessment of light emitting diode (LED) solid-state lighting for general illumination (No. 2168-2018-8077).
[7] S. Muthu, F.J.P. Schuurmans, M.D. Pashley, Red, green and blue LEDs for white light illumination, IEEE J. Selected Topics Quantum Electron. 8 (2002) 333–338.
[8] A. Mills, Lighting: the progress and promise of LEDs, III–V, Review 17 (2004) 39–41.
[9] N. Narendran, Y. Gu, J.P. Freyssnier, H. Yu, L. Deng, Solid-state lighting: failure analysis of white LEDs, J. Crystal Growth 268 (2004) 449–456.
[10] N. Narendran, Improved performance white LED, Proc. SPIE 5941 (2005) 594108.
[11] M.G. Craford, LEDs for solid state lighting and other emerging applications: status, trends and challenges, Proc. SPIE 5941 (2005) 594101.
[12] E.F. Schubert, J.K. Kim, Solid-state light sources getting smart, Science 308 (2005) 1274–1278.
[13] A.I. Zhmakin, Enhancement of light extraction from light emitting diodes. Physics Reports, 498 (2011) 189-241.
[14] Y. Ohno, Optical metrology for LEDs and solid state lighting, Proc. SPIE 6046 (2006) 604625.
[15] W. Bergbauer, Continuous-flux MOVPE growth of position-controlled N-face GaN nanorods and embedded InGaN quantum wells. Nanotechnology 21(2010) 305201.
[16] W.Bergbauer, N-face GaN nanorods: Continuous-flux MOVPE growth and morphological properties. J. Cryst. Growth 315 (2011) 164–167.
[17] K. Choi, M. Arita, Y. Arakawa, Selective-area growth of thin GaN nanowires by MOCVD. J. Cryst. Growth 357 (2012) 58–61.
[18] S. D.Hersee, X. Sun, X. Wang, The controlled growth of GaN nanowires. Nano Lett. 6 (2006)1808–11.
[19] K. Hiramatsu, Fabrication and characterization of low defect density GaN using facet-controlled epitaxial lateral overgrowth (FACELO). J. Cryst. Growth 221 (2000) 316–326.
[20] A.Lundskog, Controlled growth of hexagonal GaN pyramids by hot-wall MOCVD. J. Cryst. Growth 363 (2013) 287–293.
[21] S. Tanaka, Y. Kawaguchi, N. Sawaki, M. Hibino, K. Hiramatsu, Defect structure in selective area growth GaN pyramid on (111)Si substrate. Appl. Phys. Lett. 76 (2000) 2701.
[22] T.S. Zheleva, O. Nam, M.D. Bremser, R.F. Davis, Dislocation density reduction via lateral epitaxy in selectively grown GaN structures. Appl. Phys. Lett. 71(1997) 2472 .
[23] A.Chandolu, Selective Area Growth of GaN Nano Islands by Metal Organic Chemical Vapor Deposition: Experiments and Computer Simulations. MRS Proc. 955 (2011) I07–114.
[24] V. Kachkanov, Structural dynamics of GaN microcrystals in Evolutionary Selection Selective Area Growth probed by X-ray microdiffraction. Sci. Rep. 4(2014)4651.
[25] D. Kapolnek, Anisotropic epitaxial lateral growth in GaN selective area epitaxy. Appl. Phys. Lett. 71(1997) 1204.
[26] Y. Kawaguchi, Selective Area Growth of GaN on Si Substrate Using SiO2 Mask by Metalorganic Vapor Phase Epitaxy. Jpn. J. Appl. Phys. 37 (1998) L966–L969.
[27] X. Li, Characteristics of GaN stripes grown by selective-area metalorganic chemical vapor deposition. J. Electron. Mater. 26(1997) 306–310
[28] S. Okada, H. Miyake, K. Hiramatsu, Y. Enatsu, S. Nagao, Selective-area growth of GaN on non- and semi-polar bulk GaN substrates. Jpn. J. Appl. Phys. 53(2014) 05FL04
[29] Y. Wang, F. Hu, K. Hane, Lateral epitaxial overgrowth of GaN on a patterned GaN-on-silicon substrate by molecular beam epitaxy. Semicond. Sci. Technol. 27 (2011) 024008.
[30] Z.J. Liu, T. Huang, J. Ma, C. Liu, K.M. Lau, Monolithic Integration of AlGaN/GaN HEMT on LED by MOCVD. IEEE Electron Device Lett. 35 (2014) 330–332.
[31] B. Zhang, High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates. J. Cryst. Growth 298, (2007) 725–730.
[32] D. Zhu, D. Wallis, C. J. Humphreys, Prospects of III-nitride optoelectronics grown on Si. Rep. Prog. Phys. 76 (2013) 106501.
[33] M. Ishida, T. Ueda, T. Tanaka, D. Ueda, GaN on Si Technologies for Power Switching Devices. IEEE Trans. Electron Devices 60 (2013) 3053–3059.
[34] S. Musumeci, V. Barba, Gallium Nitride Power Devices in Power Electronics Applications: State of Art and Perspectives. Energies 16 (2023) 3894.
[35] Y. Zhang, Electrothermal Simulation and Thermal Performance Study of GaN Vertical and Lateral Power Transistors. IEEE Trans. Electron Devices 60 (2013) 2224–2230.
[36] S. Chowdhury, B.L. Swenson, M.H. Wong, & U.K.Mishra, Current status and scope of gallium nitride-based vertical transistors for high-power electronics application. Semicond. Sci. Technol. 28 (2013) 074014.
[37] J.L. Hudgins, G.S. Simin, E. Santi, M.A. Khan, An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 18 (2003), 907–914.
[38] P. Srivastava, Record Breakdown Voltage (2200 V) of GaN DHFETs on Si With 2-μm Buffer Thickness by Local Substrate Removal. IEEE Electron Device Lett. 32 (2011) 30–32.
[39] M.J. Scott, Merits of gallium nitride based power conversion. Semicond. Sci. Technol. 28(2013) 074013.
[40] A.Tanaka, R. Chen, K. Jungjohann, Strong Geometrical Effects in Submillimeter Selective Area Growth and Light Extraction of GaN Light Emitting Diodes on Sapphire. Sci Rep 5(2015) 17314.
[41] C. P. Dietrich, A. Fiore, M. G. Thompson, M. Kamp, and S. Höfling, GaAs integrated quantum photonics: Towards compact and multi-functional quantum photonic integrated circuits, Laser Photon. Rev. 10 (2016) 870–894.
[42] A. Orieux, M. A. M. Versteegh, K. D. Jöns, and S. Ducci, Semiconductor devices for entangled photon pair generation: a review, Rep. Prog. Phys. 80 (2017) 076001.
[43] M. Schwartz, E. Schmidt, U. Rengstl, F. Hornung, S. Hepp, S. L. Portalupi, K. Llin, M. Jetter, M. Siegel, and P. Michler, Fully on-chip single-photon Hanbury-Brown and Twiss experiment on a monolithic semiconductor–superconductor platform, Nano Lett. 18 (2018) 6892–6897.
[44] C. McDonald, G. Moody, S. W. Nam, R. P. Mirin, J. M. Shainline, A. McCaughan, S. Buckley, and K. L. Silverman, III–V photonic integrated circuit with waveguide-coupled light-emitting diodes and WSi superconducting single-photon detectors, Appl. Phys. Lett. 115 (2019) 081105.
[45] S. Bogdanov, M. Y. Shalaginov, A. Boltasseva, and V. M. Shalaev, Material platforms for integrated quantum photonics, Opt. Mater. Express 7 (2017) 111–132.
[46] E. Mobini, D. H. G. Espinosa, K. Vyas, and K. Dolgaleva, AlGaAs nonlinear integrated photonics, Micromachines 13 (2020) 991 (2022).
[47] F. Baboux, G. Moody, S. Ducci, S. Nonlinear integrated quantum photonics with AlGaAs. Optica, 10 (2023) 917-931.
[48] M. Kamali Moghaddam, M. Moslemi, M. Farzaneh. Analytical Modeling of ZrO2, HfO2 and SiO2 Effect over Tunneling Field Effect Transistor. J. Electron. Mater. 49 (2020), 1467-1472.
[49] S.E. Hosseini, M.N. Moghaddam (2015). Analytical modeling of a pnin tunneling field effect transistor. Mater. Sci. Semicond. Process. 30 (2015) 56-61.
[50] M. Kamali, S.E. Hosseini. Investigation of a SiGe tunnel FET: comparison to Si and Ge TFETs. J. Electr. Syst. 2(2014), 21-26.
[51] S. Kaiser, F. Symalla, T. Neumann, A. Plews, D. Vander Velpen, F. Vandeplas, A.Nejim. Automated Multiscale Design Flow for Organic LED Design. In Electrochemical Society Meeting Abstracts. J. Electrochem. Soc. 239 (2021) 1059-1059.