Nonlinear Optical Properties of Fluorescence Carbazole Derivative Using Continue Wave Blue Laser

Document Type : Original Article

Authors

1 Department of Physics, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran

2 Department of Chemistry, Hakim Sabzevari University, Sabzevar, 96179-76487, Iran

3 Department of Physics, Central Tehran Branch, IAU, Tehran, Iran

Abstract

Nonlinear optical properties of synthesized Carbazole based compound (9H-Carbazole-3,6-dicarboxaldehyde, 9-hexyl-) were investigated and measured using Z-scan method with a continuous wave blue diode laser, in different laser intensities. Open aperture Z-scan curves have peak configuration which indicates saturation in absorption has occurred. In close aperture Z-scan measurements, a peak-valley configuration of Z-san curves was related to the thermal-lensing effect that was observed below 100mW incident power. At higher incident powers, because of high nonlinear optical phase change, diffraction rings patterns were observed. Besides the photoluminescence emission of Carbazole compounds under the emission of a blue laser beam, the high nonlinear optical properties of this compound indicate that it can be a potential candidate in optical devices.

Graphical Abstract

Nonlinear Optical Properties of Fluorescence Carbazole Derivative Using Continue Wave Blue Laser

Keywords


 [1] S. D. Durbin, S. M. Arakelian, and Y. R. Shen, Laser-induced diffraction rings from a nematic-liquid-crystal film, Opt. Lett. 6 (1981) 411-413.
[2] M. Safa, Y. Rajabi, M. Ardyanian, Influence of preparation method on the structural, linear, and nonlinear optical properties of TiN nanoparticles, J. Mater. Sci.: Mater. Electron. 32 (2021) 19455–19477.
[3] A. Alizadeh, Y. Rajabi, M.M. Bagheri–Mohagheghi, Effect of crystallinity on the nonlinear optical properties of indium–tin oxide thin films, Opt. Mater.131 (2022) 112589.
[4] A. Alizadeh, S. Rostamnia, N. Zohreh, R. Hosseinpour, A simple and effective approach to the synthesis of rhodanine
derivatives via three-component reactions in water, Tetrahedron Lett. 50 (2009) 1533-1535.
[5] B. Li, L. Gao, H. Yi, L. Yang, Y. Song, Liming Zhou, And S. Fang, Synthesis and nonlinear optical properties of 4-
phenylethylene, derivatives based on a large
π conjugated structure, Opt. Mater. Express. 12 (2022) 1352.
[6] E. Koushki, B. Maleki, Induced photoacoustic gratings due to Raman scattering in organic components, Dyes Pigm.164 (2019) 82–86.
[7] M.H. Majles Ara, S.H. Mousavi, E. Koushki, S. Salmani, A .Gharibi, A. Ghanadzadeh, Nonlinear optical responses of Sudan IV doped liquid crystal by z-scan and moiré deflectometry techniques, J. Mol. Liq. 142 (2008) 29-31.
[8] R. Fathima, A. Mujeeb, Plasmon enhanced linear and nonlinear optical properties of natural curcumin dye with silver
nanoparticles, Dyes Pigm. 189 (2021) 109256.
[9] T. R. Kumar, R. J. Vijay, R. Jeyasekaran, S. Selvakumar, M. A. Arockiaraj, and P. Sagayaraj, Growth, linear and nonlinear
optical and, laser damage threshold studies of organometallic crystal of MnHg(SCN)
4, Opt. Mater. 33 (2011) 1654–1660.
[10] X. Lu, J. Y. Lee, S. Rogers, and Q. Lin, Optical Kerr nonlinearity in a high-Q silicon carbide microresonator, Opt. Express, 22 (2014) 30826-30832.
[11] G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, V. Giannetas, Z-scan analysis for high order nonlinearities through
Gaussian decomposition, Opt. Comm. 225 (2003) 253-268.
[12] M. Sheik-Bahae, A.A. Said, T-H. Wei, D. J. Hagan, E. W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam, IEEE J. Quantum Electron. 26 (1990) 760-769.
[13] M.H. Majles Ara, E. Koushki, Data analysis of z-scan experiment using Fresnel–Kirchoff integral method in colloidal TiO
2 nanoparticles, Appl. Phys. B, 107 (2012) 429-434.
[14] C.B. Yao, K.X. Zhang, X. Wen, Focus introduction: Z-scan technique, Optik.140 (2017) 680-682.
[15] E. Koushki, M.H. Majles Ara, H. Akherat Doost, Z-scan technique for saturable absorption using diffraction method in
γ- alumina nanoparticles, Appl. Phys. B 115 (2014) 279-284.
[16] B. Maleki, E. Koushki, H. Alinezhad, M. Tajbakhsh, A. H. Ehsanian, Z. Arab, S. Peiman, F. Ghasempour Nesheli, Low power Z-scan study and photoacoustic behavior of synthesized conjugated organic compounds based on carbazole derivatives, Opt. Mater. 128 (2022) 112377.
[17] B. Maleki, E. Esmaeilnezhad, H.J. Choi, E. Koushki, H. A. Rahnamaye Aliabad, M. Esmaeili, Glutathione-capped core-shell structured magnetite nanoparticles: Fabrication and their nonlinear optical characteristics, Curr. Appl. Phys. 20 (2020) 822- 827.
[18] L. Palfalvi, J. Hebling, Z-scan study of the thermo-optical effect, Appl. Phys. B 78 (2004) 775–780.
[19] E. Koushki, A. Farzaneh, Time dependence of thermo-optical effect for thin samples containing light-absorptive material, Opt. Commun. 285 (2012) 1390–1393.
[20] E. Koushki, A. Farzaneh, S.H. Mousavi, Closed aperture z-scan technique using the Fresnel–Kirchhoff diffraction theory for materials with high nonlinear refractions, Appl. Phys. B, 99 (2010) 565-570.
[21] J. Li, Z. Zhang, J. Yi, L. Miao, J. Huang, J. Zhang, Y. He, B. Huang, C. Zhao, Yanhong Zou and S. Wen. Broadband spatial
self-phase modulation and ultrafast response of MXene Ti
3C2Tx (T=O, OH or F). Nanophotonics. 9 (2020) 2415-2424.
[22] E. Koushki, M.H. Majles Ara, H. Akherat Doost, Z-scan technique for saturable absorption using diffraction method in
γ- alumina nanoparticles, Appl. Phys. B, 115 (2014) 279-284.
[23] M. Suzuki, O. Boyraz, H. Asghari&B. Jalali, Spectral dynamics on saturable absorber in mode-locking with time stretch
spectroscopy,
Sci. Rep.10 (2020) 14460.