ZnFe2O4@Fe3O4 Nanocatalyst for the Synthesis of the 1,8-Dioxooctahydroxanthene: Antioxidant and Antimicrobial Studies

Document Type : Original Article

Authors

School of Chemistry, Damghan University, Damghan, 36716-45667, Iran

Abstract

This study aims to prepare and evaluate the catalytic advantages of ZnFe2O4@Fe3O4 in the synthesis of 1,8-dioxo-octahydroxanthene derivatives. The catalyst was prepared in two steps (1) preparation of zinc ferrite ZnFe2O4 and Fe3O4 nanoparticles by co-precipitation technique (2) preparation of mixed metal oxide (ZnFe2O4@Fe3O4). The catalyst was fully characterized by FTIR, EDX, XRD, FESEM, TGA, and VSM analyses. The ZnFe2O4@Fe3O4 was applied as a catalyst for the 1,8-dioxo-octahydroxanthenes. The products were synthesized in significant yields (85–95%) in short reaction times (15–60 min) without laborious work-up. The biological activity of 1,8-dioxo-octahydroxant derivatives was studied. These compounds showed antioxidant activity between 64.4 and 90.2% and their antimicrobial activity against S. enterica, E. coli, L. monocytogenes, S. aureus, and E. faecalis was investigated.

Graphical Abstract

ZnFe2O4@Fe3O4 Nanocatalyst for the Synthesis of the 1,8-Dioxooctahydroxanthene: Antioxidant and Antimicrobial Studies

Keywords


 [1] M. Asadi Nasr, M. Deinavizadeh, A.R. Kiasat, Fe3O4@SiO2/DABCO(OH) Core-shell hybrid nanocomposite: Efficient
nanomagnetic and basic reusable catalyst in the one-pot synthesis of trithiocarbonate derivatives, Mater. Chem. Horizons, 2(2) (2023) 81-92.
[2] K. Hatami Kahkesh, Z. Baghbantaraghdari, D. Jamaledin, F. Dabbagh Moghaddam, N. Kaneko, M. Ghovvati, Synthesis,
characterization, antioxidant and antibacterial activities of zinc ferrite and copper ferrite nanoparticles, Mater. Chem.
Horizons, 2(1)(2023) 49-56.
[3] K.K. Kefeni, B.B. Mamba, Photocatalytic application of spinel ferrite nanoparticles and nanocomposites in wastewater
treatment: Review, Sustain. Mater. Technol. 23 (2020) e00140.
[4] G. Shahane, K. Zipare, J. Dhumal, S. Bandgar, V. Mathe, G. Shahane, Superparamagnetic Manganese Ferrite Nanoparticles : Synthesis and Magnetic Properties Superparamagnetic Manganese Ferrite Nanoparticles : Synthesis and Magnetic Properties, 4 (n.d.) 2–7.
[5] T.F. Marinca, I. Chicinaş, O. Isnard, Structural and magnetic properties of the copper ferrite obtained by reactive milling and
heat treatment, Ceram. Int. 39 (2013) 4179–4186.
[6] M. Mozaffari, H. Masoudi, Zinc Ferrite Nanoparticles: New Preparation Method and Magnetic Properties, J. Supercond. Nov. Magn. 27 (2014) 2563–2567.
[7] M. Atif, S.K. Hasanain, M. Nadeem, Magnetization of sol-gel prepared zinc ferrite nanoparticles: Effects of inversion and particle size, Solid State Commun. 138 (2006) 416–421.
[8] S. Roy, J. Ghose, Mössbauer study of nanocrystalline cubic CuFe2O4 synthesized by precipitation in polymer matrix, J. Magn. Magn. Mater. 307 (2006) 32–37.
[9] K. Sathiyamurthy, C. Rajeevgandhi, S. Bharanidharan, P. Sugumar, S. Subashchandrabose, Electrochemical and Magnetic Properties of Zinc Ferrite Nanoparticles through Chemical Co-Precipitation Method, Chem. Data Collect. 28 (2020) 100477.
[10] F. Li, H. Wang, L. Wang, J. Wang, Magnetic properties of ZnFe
2O4 nanoparticles produced by a low-temperature solid-state reaction method, J. Magn. Magn. Mater. 309 (2007) 295–299.
[11] A. Phuruangrat, B. Kuntalue, S. Thongtem, T. Thongtem, Synthesis of cubic CuFe
2O4 nanoparticles by microwave hydrothermal method and their magnetic properties, Mater. Lett. 167 (2016) 65–68.
[12] D. Thapa, N. Kulkarni, S.N. Mishra, P.L. Paulose, P. Ayyub, Enhanced magnetization in cubic ferrimagnetic CuFe
2O4
nanoparticles synthesized from a citrate precursor: The role of Fe2+, J. Phys. D. Appl. Phys. 43 (2010).
[13] M. Ebrahimi, R. Raeisi Shahraki, S.A. Seyyed Ebrahimi, S.M. Masoudpanah, Magnetic properties of zinc ferrite nanoparticles synthesized by coprecipitation method, J. Supercond. Nov. Magn. 27 (2014) 1587–1592.
[14] M. Amiri, M. Salavati-Niasari, A. Akbari, Magnetic nanocarriers: Evolution of spinel ferrites for medical applications, Adv. Colloid Interface Sci. 265 (2019) 29–44.
[15] A.G. Banerjee, L.P. Kothapalli, P.A. Sharma, A.B. Thomas, R.K. Nanda, S.K. Shrivastava, V. V. Khatanglekar, A facile
microwave assisted one pot synthesis of novel xanthene derivatives as potential anti-inflammatory and analgesic agents, Arab. J. Chem. 9 (2016) S480–S489.
[16] S. Naseem, M. Khalid, M.N. Tahir, M.A. Halim, A.A.C. Braga, M.M. Naseer, Z. Shafiq, Synthesis, structural, DFT studies,
docking and antibacterial activity of a xanthene based hydrazone ligand, J. Mol. Struct. 1143 (2017) 235–244.
[17] S.N. Richardson, T.K. Nsiama, A.K. Walker, D.R. McMullin, J.D. Miller, Antimicrobial dihydrobenzofurans and xanthenes
from a foliar endophyte of Pinus strobus, Phytochemistry. 117 (2015) 436–443.
[18] Y. Kwon, P. Song, J.H. Yoon, J. Ghim, D. Kim, B. Kang, T.G. Lee, J.A. Kim, J.K. Choi, I.K. Youn, H.K. Lee, S.H. Ryu,
Xanthene derivatives increase glucose utilization through activation of LKB1-dependent AMP-activated protein kinase, PLoS One. 9 (2014) 1–8.
[19] J.M. Khurana, A. Chaudhary, A. Lumb, B. Nand, Efficient one-pot syntheses of dibenzo[a, i]xanthene-diones and evaluation of their antioxidant activity, Can. J. Chem. 90 (2012) 739–746.
[20] A.A. Carr, J.F. Grunwell, A.D. Sill, D.R. Meyer, F.W. Sweet, B.J. Scheve, J.M. Grisar, R.W. Fleming, G.D. Fleming, BisBasic-Substituted Polycyclic Aromatic Compounds. A New Class of Antiviral Agents. 7. Bisalkamine Esters of 9-
Oxoxanthene-2,7-dicarboxylic Acid, 3,6-Bis-Basic Ethers of Xanthen-9-one, and 2,7-Bis(aminoacyl)xanthen-9-ones, -
xanthenes, and -thioxanthene, J. Med. Chem. 19 (1976) 1142–1148.
[21] K. Chibale, M. Visser, V. Yardley, S.L. Croft, A.H. Fairlamb, Synthesis and evaluation of 9,9-dimethylxanthene tricyclics
against trypanothione reductase, Trypanosoma brucei, Trypanosoma cruzi and Leishmania donovani, Bioorganic Med. Chem. Lett. 10 (2000) 1147–1150.
[22] F.J. Villani, T.A. Mann, E.A. Wefer, J. Hannon, L.L. Larca, M.J. Landon, W. Spivak, D. Vashi, S. Tozzi, G. Danko, M. del
Prado, R. Lutz, Benzopyranopyridine Derivatives. 1. Aminoalkyl Derivatives of the Azaxanthenes as Bronchodilating Agents, J. Med. Chem. 18 (1975) 1–8.
[23] N. Mulakayala, G. Pavan Kumar, D. Rambabu, M. Aeluri, M. V. Basaveswara Rao, M. Pal, A greener synthesis of 1,8-dioxooctahydroxanthene derivatives under ultrasound, Tetrahedron Lett. 53 (2012) 6923–6926.
[24] H.Y. Lü, J.J. Li, Z.H. Zhang, ZrOCl·28H
2O: A highly efficient catalyst for the synthesis of 1,8-dioxo-octahydroxanthene
derivatives under solvent-free conditions, Appl. Organomet. Chem. 23 (2009) 165–169.
[25] F. Darviche, S. Balalaie, F. Chadegani, P. Salehi, Diammonium Hydrogen Phosphate as a Neutral and Efficient Catalyst for Synthesis of 1,8‐Dioxo‐octahydroxanthene Derivatives in Aqueous Media, Synth. Commun. 37 (2007) 1059–1066.
[26] A.N. Dadhania, V.K. Patel, D.K. Raval, Ionic liquid promoted facile and green synthesis of 1,8-dioxo-octahydroxanthene derivatives under microwave irradiation, J. Saudi Chem. Soc. 21 (2017) S163–S169.
[27] M.A. Nasseri, M. Kazemnejadi, B. Mahmoudi, F. Assadzadeh, S.A. Alavi, A. Allahresani, Efficient preparation of 1,8-dioxooctahydroxanthene derivatives by recyclable cobalt-incorporated sulfated zirconia (ZrO
2/SO42-/Co) nanoparticles, J. Nanoparticle Res. 21 (2019).
[28] J. Ashtarian, R. Heydari, M.T. Maghsoodlou, A. Yazdani-Elah-Abadi, Bronsted Acidic Ionic Liquids (BAILs)-Catalyzed
Synthesis of 1,8-Dioxo-Octahydroxanthene and 2,2′-Arylmethylene Bis(3-Hydroxy-5,5-Dimethyl-2-Cyclohexene-1-One)
Derivatives Under Eco-Friendly Conditions, Iran. J. Sci. Technol. Trans. A Sci. 44 (2020) 51–64.
[29] S. Naderi, R. Sandaroos, S. Peiman, B. Maleki, Novel crowned cobalt (II) complex containing an ionic liquid: A green and efficient catalyst for the one-pot synthesis of chromene and xanthene derivatives starting from benzylic alcohols, J. Phys. Chem. Solids. 180 (2023) 111459.
[30] B. Maleki, S. Barzegar, Z. Sepehr, M. Kermanian, R. Tayebee, A novel polymeric catalyst for the one-pot synthesis of
xanthene derivatives under solvent-free conditions, J. Iran. Chem. Soc. 9 (2012) 757–765.
[31] B. Maleki, A. Davoodi, M.V. Azghandi, M. Baghayeri, E. Akbarzadeh, H. Veisi, S.S. Ashrafi, M. Raei, Facile synthesis and
investigation of 1,8-dioxooctahydroxanthene derivatives as corrosion inhibitors for mild steel in hydrochloric acid solution, New J. Chem. 40 (2016) 1278–1286.
[32] S. Kanagesan, M. Hashim, S.A.B. Aziz, I. Ismail, S. Tamilselvan, N.B. Alitheen, M.K. Swamy, B.P. Chandra Rao, Evaluation
of antioxidant and cytotoxicity activities of copper ferrite (CuFe
2O4) and zinc ferrite (ZnFe2O4) nanoparticles synthesized by sol-gel self-combustion method, Appl. Sci. 6 (2016) 1–13.
[33] S. Krehula, S. Musić, Influence of Mn-dopant on the properties of α-FeOOH particles precipitated in highly alkaline media, J. Alloys Compd. 426 (2006) 327–334.
[34] M. 24 Iacob, Sonochemical synthesis of hematite nanoparticles, Chem. J. Mold. Gen. 10 (2015) 46–51.
[35] F.H. Mulud, N.A. Dahham, I.F. Waheed, Synthesis and Characterization of Copper Ferrite Nanoparticles, IOP Conf. Ser.
Mater. Sci. Eng. 928 (2020).
[36] M. Fuentes-Pérez, M. Sotelo-Lerma, J.L. Fuentes-Ríos, E.G. Morales-Espinoza, M. Serrano, M.E. Nicho, Synthesis and study of physicochemical properties of Fe
3O4@ZnFe2O4 core/shell nanoparticles, J. Mater. Sci. Mater. Electron. 32 (2021) 16786– 16799.